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Basic system Hamiltonian

Start from a bosonic Hamiltonian in second
quantization,

Ĥ =

∫
dr Ψ̂†(r, t)ĥ0(r)Ψ̂(r, t) +

1

2

∫
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)V (r − r′)Ψ̂(r′, t)Ψ̂(r, t)

ĥ0(r) = −
~2

2m
∇2 + Vext(r, t) .

Contact interaction approximation: for dilute gases
at very low T,

V (r − r′) ≡ gδ(r − r′) , g =
4π~2as

m
.

The equations of motion in the Heisenberg picture read

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
=
(
ĥ0(r) + gΨ̂†(r, t)Ψ̂(r, t)

)
Ψ̂(r, t) .
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Bose-Einstein condensation

Condensation: macroscopic occupation of a single
quantum state. Let’s separate the contributions

Ψ̂(r, t) = φ̂(r, t) + δ̂(r, t) ,

{
φ̂(r, t) = â0(t)ϕ0(r, t)

δ̂(r, t) =
∑

i 6=0 âi (t)ϕi (r, t) .

Bogoliubov approximation: since

1
N0

[
â0(t), â†0(t)

]
|N0〉 =

1
N0
|N0〉 −−−−→

N0�1
0

we may approximate the condensate field operator with
a condensate wavefunction :

â0(t) '
√

N0 ⇔ φ̂(r, t) ' φ(r, t) =
√
N0ϕ0(r, t) .
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Bogoliubov approximation
Ĥ was invariant under global phase transformations of
Ψ̂, while φ(r, t) breaks U(1). As a result, N is not
conserved: since N0 ± 1 ' N0,〈

φ̂(r, t)
〉

= φ(r, t) 6= 0 ,
〈
δ̂(r, t)

〉
= 0 .

We will define

n(r, t) =
〈

Ψ̂†(r, t)Ψ̂(r, t)
〉

= |φ(r, t)|2+
〈
δ̂†(r, t)δ̂(r, t)

〉
≡ nc(r, t)+ñ(r, t) .

Even at T ' 0, where the quantum depletion (in 3D) is

n − n0 =
8
√
π

3

√
na3 , na3 ∼ 10−3 ,

thermal fluctuations dominate over quantum
fluctuations. Then δ̂ will be used to describe the
thermal cloud.
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Resulting Hamiltonian

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4

H0 =

∫
dr
[
φ∗ĥ0φ+

g

2
|φ|4

]
Ĥ1 =

∫
dr
[
δ̂†
(
ĥ0 + g |φ|2

)
φ+ φ∗

(
ĥ0 + g |φ|2

)
δ̂
]

Ĥ2 =

∫
dr
{
δ̂†
(
ĥ0 + 2g |φ|2

)
δ̂ +

g

2

[
(φ∗)2δ̂δ̂ + φ2δ̂†δ̂†

]}
Ĥ3 =

∫
dr g

[
φδ̂†δ̂†δ̂ + φ∗δ̂†δ̂δ̂

]
Ĥ4 =

∫
dr

g

2
δ̂†δ̂†δ̂δ̂ .

For a mean field treatment, we can either:

(i) Write the equation of motion and solve it in the
time independent limit, or

(ii) Diagonalize Ĥ − µN̂ in the Grand Canonical
ensemble.
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Gross-Pitaevskii equation
At T = 0 all the particles are in the condensate, so
we can set δ̂ = δ̂† = 0. The equation of motion reduces
to the GPE

i~
∂

∂t
φ(r, t) =

[
− ~2

2m
∇2 + Vext(r, t) + g |φ(r, t)|2

]
φ(r, t) .

We can eliminate the time dependence by letting

φ(r, t) = φ0(r)e−
i
~µt

and thus write the time-independent GPE

µφ0(r) =

[
− ~2

2m
∇2 + Vext(r, t) + g |φ0(r)|2

]
φ0(r) .

This can alternatively be found by minimizing at fixed
N the energy functional

E [φ] =

∫
dr
{

~2

2m
|∇φ0(r)|2 + Vext(r, t)|φ0(r)|2 +

g

2
|φ0(r)|4

}
.
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Hydrodynamics

Defining

φ(r, t) =
√

n0(r, t)e iθ(r,t) , v(r, t) =
~
m
∇θ(r, t)

the GPE may be rewritten as{
∂n0
∂t +∇ · (n0v) = 0
m
(
∂
∂t + v · ∇

)
v = −∇µ0 = −∇ (PQ + Vext)

where we defined the quantum pressure

PQ =
1
2
gn2

0 −
1
4
n0∇2 (log n0) .

The first term is consistent with the usual v2 = ∂P
∂ρ ,

with ρ = m|φ|2 = mn0, if v =
√

gn0
m .
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Bogoliubov equations
Inserting an ansatz

φ(r, t) = e−
i
~µt [φ0(r) + δφ(r, t)] , δφ(r, t) =

∑
i

[
ui (r)e−iωi t − v∗i (r)e iωi t

]
into the equation of motion gives Bogoliubov equations(

L̂(r) M̂(r)
−M̂∗(r) −L̂∗(r)

)(
ui (r)
vi (r)

)
= εi

(
ui (r)
vi (r)

)
L̂(r) = ĥ0 + 2g |φ0(r)|2 − µ , M̂(r) = gφ0(r)2 .

Uniform case: Vext = 0, nc = |φ0|2 independent of r.
Substituting the plane waves solutions ui (r) = upe

i
~p·r,

vi (r) = vpe
i
~p·r gives the quasiparticle spectrum

ε(p) =
√
ε2p + 2gn0εp →

{
gn0 + εp , large p
sp , small p .
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Alternative derivation
Diagonalize Ĥ ' H0 + Ĥ1 + Ĥ2 in the Grand Canonical:

K0 =

∫
dr
[
φ
∗
0 (ĥ0 − µ)φ0 +

g

2
|φ0|4

]
K̂1 =

∫
dr
[
δ̂
†
(
ĥ0 + g|φ0|2 − µ

)
φ0 + φ

∗
0

(
ĥ0 + g|φ0|2 − µ

)
δ̂
]

K̂2 =

∫
dr
{
δ̂
†
(
ĥ0 + 2g|φ0|2 − µ

)
δ̂ +

g

2

[
(φ∗0 )2δ̂δ̂ + φ

2
0δ̂
†
δ̂
†
]}

.

(i) Minimizing K0 gives the time independent GPE
(ii) K̂1 is automatically null

(iii) K̂2 can be diagonalized by a Bogoliubov
transformation

δ̂(r, t) =
∑
i

[
ui (r)β̂i (t)− v∗i (r)β̂†i (t)

]
.

If ui (r), vi (r) satisfy Bogoliubov’s equations, then

K̂2 = −
∑
i

εi

∫
dr |vi (r)|2 +

∑
i

εi β̂
†
i β̂i .

Davide Venturelli (SISSA, Trieste) Finite temperature models of Bose-Einstein condensation9 June 2020 10 / 25



Outline

Basic system Hamiltonian
Bogoliubov Approximation

Zero Temperature Mean Field Theory
Gross-Pitaevskii equation
Bogoliubov equations

Finite Temperature Mean Field Theory
Hartree-Fock limit
Hartree-Fock-Bogoliubov limit
Effective interaction
Static generalized many-body theories

Davide Venturelli (SISSA, Trieste) Finite temperature models of Bose-Einstein condensation9 June 2020 11 / 25



Finite Temperature Mean Field Theory

We want to consider the full Ĥ. Let’s approximate

δ̂
†
δ̂
†
δ̂δ̂ ' 4

〈
δ̂
†
δ̂
〉
δ̂
†
δ̂ +

〈
δ̂
†
δ̂
†
〉
δ̂δ̂ +

〈
δ̂δ̂
〉
δ̂
†
δ̂
† −

[
2
〈
δ̂
†
δ̂
〉2

+
〈
δ̂δ̂
〉 〈
δ̂
†
δ̂
†
〉]

δ̂
†
δ̂δ̂ ' 2

〈
δ̂
†
δ̂
〉
δ̂ + δ̂

†
〈
δ̂δ̂
〉
, δ̂

†
δ̂
†
δ̂ ' 2δ̂†

〈
δ̂
†
δ̂
〉

+
〈
δ̂
†
δ̂
†
〉
δ̂

which give the (equilibrium) Wick theorem results
〈
δ̂
†
δ̂
†
δ̂δ̂
〉

= 2
〈
δ̂
†
δ̂
〉 〈
δ̂
†
δ̂
〉

+
〈
δ̂δ̂
〉 〈
δ̂
†
δ̂
†
〉
,

〈
δ̂
†
δ̂δ̂
〉

= 0 .

Defining the pair anomalous average m̃(r, t) =
〈
δ̂(r, t)δ̂(r, t)

〉
,

δH0 = δHHF
0 + δHBOG

0 = −g

∫
dr ñ2 −

g

2

∫
dr m̃m̃∗

δĤ1 = δĤHF
1 + δĤBOG

1 = g

∫
dr
(
2φñδ̂† + h.c.

)
+ g

∫
dr
(
φm̃∗δ̂ + h.c.

)
δĤ2 = δĤHF

2 + δĤBOG
2 = 2g

∫
dr ñδ̂†δ̂ +

g

2

∫
dr
(
m̃∗δ̂δ̂ + m̃δ̂†δ̂†

)
.
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Finite Temperature Mean Field Theory

Hartree-Fock limit: discard all the terms contaning
two equal creation/annihilation operators, including

ĤBOG
2 =

∫
dr
[
(φ∗)2δ̂δ̂ + φ2δ̂†δ̂†

]
.
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Hartree-Fock limit

(i) The linear term K̂1 + δĤHF
1 vanishes if we impose[

ĥ0 + g |φ0|2 + 2gñ
]
φ0 = µφ0

which is a generalized time-independent GPE. This
choice also leaves K0 + δHHF

0 minimized.

(ii) What remains is

K̂2 − ĤBOG
2 + δĤHF

2 =

∫
dr δ̂†

[
ĥ0 + 2g(|φ0|2 + ñ)− µ

]
δ̂

which is already diagonal: single-particle
energies get dressed as

ε̃i (r) = εi + 2g
[
|φ0|2(r) + ñ(r)

]
− µ .
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Thermal cloud
The equilibrium thermal cloud density is then

ñ(r) =
∑
i 6=0

|ϕi (r)|2
〈
â†i âi

〉
,

〈
â†i âi

〉
=

1
eβε̃i (r) − 1

.

If Vext(r) varies slowly (local density approximation ),
we may express semiclassically

ε̃(r,p) = ε(p) + Vext(r) + 2g
[
|φ0|2(r) + ñ(r)

]
− µ

and thus compute

ñ(r) =

∫
dp

(2π~)3
1

eβε̃i (r,p) − 1
.
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Hartree-Fock-Bogoliubov limit

Let’s now include all quadratic non-condensate
operators (m̃, m̃∗ as well). Proceeding as before,

(i) The linear term K̂1 + δĤ1 vanishes if we impose[
ĥ0 + g |φ0|2 + 2gñ

]
φ0 + gm̃φ∗0 = µφ0

which is yet another generalized time-independent
GPE.

(ii) What remains is

K̂2 + δĤ2 =

∫
dr
{
δ̂
†
[
ĥ0 + 2g(|φ0|2 + ñ)− µ

]
δ̂ +

g

2

[(
(φ∗)2 + m̃∗

)
δ̂δ̂ +

(
φ

2 + m̃
)
δ̂
†
δ̂
†
]}

which can be diagonalized by a Bogoliubov
transformation.
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Hartree-Fock-Bogoliubov limit

(iii) This leads to the generalized Bogoliubov equations(
L̂(r) M̂(r)
−M̂∗(r) −L̂∗(r)

)(
ui (r)
vi (r)

)
= εi

(
ui (r)
vi (r)

)
L̂(r) = ĥ0(r)+2g

[
|φ0(r)|2 + ñ(r)

]
−µ , M̂(r) = g

[
φ0(r)2 + m̃(r)

]
.

The excitations are Bogoliubov quasiparticles.
For a static thermal cloud,

〈
β̂†i β̂j

〉
= δij fi.

(iv) Equilibrium averages are then

ñ(r) =
〈
δ̂†(r)δ̂(r)

〉
=
∑
i

(
|ui (r)|2 + |vi (r)|2

)
fi + |vi (r)|2

m̃(r) =
〈
δ̂(r)δ̂(r)

〉
=
∑
i

ui (r)v∗i (r)(1 + 2fi ) .
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HFB vs HF

PROs:
It lowers the free energy, so it gives in principle a
better approximation to the many body wavefunction.

CONs:

(1) The expression for m̃(r) diverges!
In the homogeneous case, for instance,

upv
∗
p ∝

1
εp

.

(2) The homogeneous Bogoliubov spectrum is gapped,

ε2p = ε2p+2gεp
(
|φ0|2 − m̃

)
+g2 [m̃2 − 2m̃|φ0|2 − |m̃|2 − 2 Re(φ2

0m̃
∗)
]
,

and this violates Goldstone theorem.

Davide Venturelli (SISSA, Trieste) Finite temperature models of Bose-Einstein condensation9 June 2020 18 / 25



How to deal with the effective interaction?

I For low temperature dilute systems, atoms spend
most of their time far away from each other:
short-distance correlations are unimportant.

I Interactions are well described in terms of
scattering processes on asymptotic scattering
states, whose only effect is a change of phase of
the wavefunction.

I At low energy, the only accessible scattering
channel is s-wave. We may approximate the process
by a pseudopotential

V (r)→ gδ(r) .
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How to implement the pseudopotential

I Construct an effective potential using
Lippmann-Schwinger’s equation: resumming the
whole series, one gets the T-matrix. Now we can
impose the pseudopotential approximation.

I g is fixed by assuming scattering to take place in
the vacuum at low energies: then

g ≡ T (2)(p = p′ = 0; E = 0) =
4π~2as

m
.

Use it with an upper momentum cut-off: for p ≥ ~
as
,

the real T-matrix would drop to zero.
I If you simply set V (r) ≡ gδ(r) and ran perturbation

theory, high-lying modes may be counted twice!
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HFB troubleshooting

(1) The divergence of m̃ is due to double-counting of
the high-lying modes, which we then subtract:
define the renormalized

m̃R(r) = m̃(r)− lim
i→∞

ui (r)v∗i (r)

to be replaced for m̃(r) everywhere.

(2) A dirty way is to ignore all occurrences of m̃:
this gives the HFB-Popov limit

ĤHFBP = ĤHF + ĤBOG
2 =

2∑
i=0

(
Ĥi + δĤHF

i

)
.

The GPE is the same as in the HF limit, but it has
a gapless Bogoliubov spectrum.
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Static generalized many-body theories

What if scattering takes place in a medium?

(i) Intermediate states may be thermally populated
(→ bosonic enhancement of the transfer rate)

(ii) Intermediate states may be dressed quasiparticle
states.

Upgrading of the 2-body to the many-body T-matrix is
achieved by including m̃(r) =

〈
δ̂δ̂
〉
, which contains

information about correlations between nearby atoms.

→ Define a generalized effective interaction for
collisions between two condensate atoms

g(r) ≡ g

(
1 +

m̃R

|φ0|2

)
so that g(r)|φ0|2φ0 = g

[
|φ0|2 + m̃R

]
φ0.
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Static generalized many-body theories

Replacing for g(r) where not already present, we get(
L̂(r) M̂(r)
−M̂∗(r) −L̂∗(r)

)(
ui (r)
vi (r)

)
= εi

(
ui (r)
vi (r)

)
L̂(r) = ĥ0(r) +2gc(r)|φ0(r)|2 +2gt(r)ñ(r)−µ , M̂(r) = gc(r)

[
φ0(r)2][

ĥ0 + gc(r)|φ0|2 + 2gt(r)ñ(r)
]
φ0(r) = µφ0(r) .

What about collisions between a condensate and a
thermal atom? We have two options:{

gt(r) = gc(r) = g(r)
gc(r) = g(r) , gt(r) = g

leading to two distinct generalized HFB theories.
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Generalized HFB theories
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What’s next?

I The mean field approximations we took at the
beginning have the effect of ignoring particle
exchanging collisions between condensed and
thermal atoms and collisions between thermal
atoms, which lead to thermal population
redistribution.

I For this reason, they can’t be used to describe
dynamical effects.

I This gave rise to four variants of mean field
theories: HF, HFB, HFBP and generalized HFB.

I Going beyond mean field by taking into account
correlations of three fluctuation operators, like〈
δ̂†δ̂δ̂

〉
, leads to a description of the dynamics of

both the condensate and the thermal cloud and
solves the problem of the gapped spectrum.
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