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Maximal entropy states

Setting: homogeneous many-body 1d system of ∞
length, with short-range interactions. Let the system
admit a set of conserved charges

Qi =

∫
dx q̃i (x , t) ,

∂Qi

∂t
= 0

where q̃i (x , t) are a set of local densities s.t.

∂t q̃i (x , t) + ∂x j̃i (x , t) = 0 .

After a long enough time, we expect any finite region
to relax to a state described by the density matrix ρ,
the rest of the system playing the role of a bath.
This ρ maximizes the entropy

S = −Tr{ρ log ρ} → ρ ∼ e−
∑

i β
i Qi .
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Thermodynamics

Averages of observables, invariant under spacetime
translations, are given by

〈O〉 = Tr{ρO} = 〈O〉~β

− ∂

∂βi
〈O〉~β =

∫
dx 〈Oq̃i (x , 0)〉c~β

where the set of Lagrange parameters ~β specifies the
state. In particular,

qi ≡ 〈q̃i (0, 0)〉~β , ji ≡
〈
j̃i (0, 0)

〉
~β
.

Since there are as many βi as there are conserved
densities qi, the set of averages ~q can in fact be
used to fully characterize the state.
This leads to the equations of state ji = ji (~q).
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Euler hydrodynamics
Real states are inhomogeneous/dynamical: 〈O(x , t)〉.
Assumption: local entropy maximisation

〈O(x , t)〉 ' 〈O(0, 0)〉~β(x,t)
where (x , t) is a fluid cell
(separation of scales ). Calling

qi (x , t) ≡ 〈q̃i (0, 0)〉~β(x,t) , ji (x , t) ≡
〈
j̃i (0, 0)

〉
~β(x,t)

leads to Euler hydrodynamic equations

∂tqi (x , t) + ∂x ji (x , t) = 0 ,

which can be cast in their quasilinear form by
defining the flux Jacobian

A j
i (~q(x , t)) ≡ ∂ji (~q)

∂qj
→ ∂tqi (x , t) +

∑
j

A j
i (x , t)∂xqj (x , t) = 0 .
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Normal modes, entropy
I Diagonalizing A j

i we get the effective velocities

RAR−1 = diag(veffi ) .

If we can find functions ni (~q) (normal modes) s.t.

R j
i =

∂ni

∂qj
→ ∂tni + veffi ∂xni = 0

i.e. ni is convectively transported at veffi (~n).
I Define a free energy and free energy flux s.t.

qi =
∂f

∂βi
, ji =

∂g

∂βi
,

hence the entropy density and its current

s =
∑

i

βiqi − f , js =
∑

i

βi ji − g .

Euler equations conserve entropy:

∂ts + ∂x js = 0 .
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Scattering map in integrable systems

Integrable system: ∞ conserved quantities with local
densities. Maximal entropy states still have the form
(Generalized Gibbs Ensemble )

ρ ∼ e−
∑

i β
i Qi ∼ e−Qw .

Scattering map: a recipe

1. Choose a vacuum

2. Excite the system over some region [0, L]

3. Step to asymptotic coordinates, i.e. let the
system evolve for t � 1 on the line, until the
density is null and the excitations are far apart

4. Put a measure on such coordinates and send L→∞
to obtain the thermodynamics
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Asymptotic coordinates

Consider a set of particles
with repulsive interactions,
described by the canonical
coordinates

{xn, pm} = δn,m .

Let evolve until x1 � x2 � ...� xn, pn < pn−1.
Here the potential won’t be felt anymore and the
evolution will be free:{

xn(0)

pn(0)

H−−−→
t∗�1

{
xn(t∗)

pn(t∗) ≡ poutn

Hfree−−−→
−t∗

{
xoutn = xn(t∗)− poutn t∗

poutn

This defines the canonical maps

{xn, pn}
Sout−−→ {xoutn , poutn } , {xn, pn}

Sin−−→
{
xinn , pinn

}
.
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Some consequences

I Conserved charges, being local (or quasi-local),
can only depend on the asymptotic momenta when the
particles are far apart:

Qw =
∑

i

βiQi ≡
∑

n

w(poutn ) , w(p) =
∑

i

βihi (p) .

I Scattering can be viewed as Sout ◦ S−1
in .

I The charges Qi commute with H and they can be
thought as generators of nonlinear transformations
acting on the asymptotic coordinates. This
implies the factorization of scattering into
2-body processes.

I In 1+1 dimensions, this means elastic scattering:{
pinn

}
=
{
poutn

}
.
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Quasiparticles

Quasiparticle: it’s a tracer
attached to real particles which
jumps from particle to particle
at collisions, following a given
momentum. We label them by pinn .

Each scattering event is described by a 2-body shift
ϕ(pn − pm). Summing over all of them,

xoutn = xinn −
∑
m>n

ϕ(pinn − pinm ) +
∑
m<n

ϕ(pinn − pinm ) .

This can be used to approximate Sin:

xinn ' xn +

( ∑
m>n,xm<xn

−
∑

m<n,xm>xn

)
ϕ(pinn − pinm ) .
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Quasiparticle description of thermodynamics

Let’s compute the canonical partition function

Z =

∫
xn∈[0,L]

N∏
n=1

dxn dpn e
−
∑

i β
i Qi

−−→
Sin

∫ ∏
n

dpinn e−
∑

n w(pin
n )

∫
xn∈[0,L]

∏
n

dxinn

RN

where the volume contribution
from quasiparticle n is

R = L +
∑
m 6=n

ϕ(pinn − pinm ) .
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Quasiparticle description of thermodynamics

In the limit N, L→∞ at fixed density, define the
density of quasiparticles

ρp(pn) = lim
N,L→∞

1
L(pn+1 − pn)

so that
1
L

∑
n

f (pinn ) →
∫

dp ρp(p)f (p) .

Rewrite the volume contribution in term of the density
of space ρs(p),

R

L
= 1+

1
L

∑
m 6=n

ϕ(pinn −pinm ) → 2πρs(pinn ) = 1+

∫
dp ρp(p)ϕ(pinn −p) .

Finally, construct the grancanonical partition
function and perform a large deviation analysis.
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Thermodynamic Bethe Ansatz: ingredients

1. Spectral space

2. Scattering shift ϕ(p − p′) (from 2-body scattering)
3. Free energy function F (ε), or occupation function

n(ε) = dF (ε)
dε , e.g. for fermions/bosons

n(ε) = (eε ± 1)−1 .

4. The functions hi (p) which specify the conserved
quantities, Qi =

∑
n hi (p

in
n ). For example, in QM

Qi |p1, p2, ..., pN〉 =
∑

n

hi (pn) |p1, p2, ..., pN〉 .

5. The source term w(p) =
∑

i β
ihi (p), which specifies

the state. For example, in QM, w(p) is the
one-particle eigenvalue of

∑
i β

iQi.
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Thermodynamic Bethe Ansatz: results

I Energy contribution of the quasiparticle p

ε(p) = w(p) +

∫
dp′

2π
ϕ(p − p′)F (ε(p′))

I Dressing operation

f dr(p) = f (p) +

∫
dp′

2π
ϕ(p − p′)n(p′)f dr(p′)

where n(p) is the occupation function

n(p) =
dF (ε)

dε

∣∣∣∣
ε=ε(p)

.

We can then rewrite

ρp(p) =
1
2π

1dr(p)n(p) , ρs(p) =
1
2π

1dr(p) → n(p) =
ρp(p)

ρs(p)
.
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Charges and currents
Charge/entropy densities are constructed as

qi =

∫
dp ρp(p)hi (p) , s =

∫
dp ρs(p) [ε(p)n(p)− F (ε(p))] .

Currents require a definition of time. We need as an
extra ingredient the energy function

E (p) = hk (p) s.t. H ≡ Qk =
∑

n

hk (pinn ) .

This allows to define an effective velocity

v eff (p) =
(E ′)dr(p)

1dr(p)
=

(E ′)dr(p)

2πρs(p)

and finally the fluxes

ji =

∫
dp ρp(p)v eff (p)hi (p) , js =

∫
dp ρs(p)v eff (p) [ε(p)n(p)− F (ε(p))] .

Davide Venturelli (SISSA, Trieste) Generalized Hydrodynamics 05.05.2020 15 / 25



Fundamental equations
In scattering theory (with TBA),{

βi
}
↔ {qi} ↔ ρp(p) ↔ n(p) ↔ w(p) ↔ ε(p)

are all equivalent ways of describing the state of the
system. In hydrodynamics, each fluid cell (x , t) has
its maximal entropy state:

ρp(p) → ρp(p, x , t) .

The conservation equations become
∫

dp hi (p)
{
∂tρp + ∂x

(
veffρp

)}
= 0 .

If {hi} form a complete set, we get the GHD equations

∂tρp(p, x , t) + ∂x

[
veff(p, x , t)ρp(p, x , t)

]
= 0

veff(p, x, t) = E ′(p) +
∫

dp′ ϕ(p − p′)ρp(p
′
, x, t)

[
veff(p′, x, t) − veff(p, x, t)

]
.
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Conservation laws and normal modes
I Again, entropy is conserved:

∂ts + ∂x js = 0 .

I The occupation function n(p) gives the GHD normal
modes

∂tn(p, x , t) + veff(p, x , t)∂xn(p, x , t) = 0

i.e. the density of quasiparticle per unit
available space in asymptotic coordinates is
convectively transported by the GHD flow, along
the characteristic curve with veff(p, x , t).

I Any r(n) gives rise to a conservation law:

∂t [ρp · r(n)] + ∂x

[
veff · ρp · r(n)

]
= 0 .

Choosing in particular r = 1
n,

∂tρs + ∂x

[
veffρs

]
= 0 .
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Solution by characteristics

Define the characteristic curve starting at position u

t 7→ x(p, u, t) :

{
x(p, u, 0) = u

∂tx(p, u, t) = veff(p, x(p, u, t), t) .

By GHD,

d
dt

n(p, x(p, u, t), t) = 0 .

Let’s invert x(p, u, t)→ u(p, x , t).
Climbing backwards from (x , t), since n is constant,

n(p, x , t) = n(p, u(p, x , t), 0)

so if we know u = u(p, x , t) we have solved the IVP.
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Equation for u(p, x , t)
The function u(p, x , t) satisfies, just like n,

∂t u(p, x, t) + veff(p, x, t)∂x u(p, x, t) = 0

with the initial condition u(p, x , 0) = x.

Example: free model
veff(p) ≡ v(p) = E ′(p) for any state. Then x = u + v(p)t.

Suppose the system is asymptotically homogeneous on
the far left (x ≤ x0 � 0) and does not evolve. Let

v̂(p) ≡ 2πρs(p,−∞, 0)veff(p,−∞, 0) .

Then u is determined by

2π
{∫ u

x0

dy ρs(p, y , 0)−
∫ x

x0

dy ρs(p, y , t)

}
+ v̂(p) · t = 0 .
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Geometric interpretation
Define a new space coordinate

dx̂ = 2πρs(p, x , t) dx , x̂(p, t) =

∫ x

x0

2πρs(p, y , t) dy .

In these terms, the equation for u becomes simply

x̂(p, t) = û(p, 0) + v̂(p) · t .

This change of metric trivializes the fluid equation,

∂t n̂(p, x̂ , t) + v̂(p)∂x̂ n̂(p, x̂ , t) = 0 ,

because x̂ is the space perceived by asymptotic
particles, whose evolution is trivial:

xinn (t) = xinn + pinn · t , pinn (t) = pinn .

Being n =
ρp

ρs
the density in asymptotic phase space,

GHD = S−1
in ( Liouville equations ) .
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External force fields
Let’s add a potential H 7→ H+ V (x) which breaks
momentum conservation. Can we still use GHD?
→ Yes, if V (x) varies slowly: then each fluid cell
will still locally maximize entropy.

Example: Lieb-Liniger model with external V (x)

H =

∫
dx
{

1
2
∂x Ψ†∂x Ψ + gΨ†Ψ†ΨΨ + V (x)Ψ†(x)Ψ(x)

}
.

Rewrite H(x) = HLL + V (x)Q0, where

HLL =

∫
x

dy
{

1
2
∂y Ψ†∂y Ψ + gΨ†Ψ†ΨΨ

}
, Q0 =

∫
x

dy Ψ†Ψ .

This gives the local energy function

E (p, x) =
p2

2
+ V (x) .
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GHD equations with external V (x)

In general, one could couple a field to any charge:

H(x) = HLL +
∑

i

V i (x)Qi → E (p, x) =
p2

2
+
∑

i

V i (x)hi (x) .

I The effective velocity gets modified as

v eff (p, x , t) =
[E ′(·, x)]

dr
(p, x , t)

1dr(p, x , t)

I GHD equations acquire a new term

∂tρp + ∂x

(
veffρp

)
+ ∂p

(
aeffρp

)
= 0

where we introduced the effective acceleration

aeff (p, x , t) =
[−∂xE (·, x)]dr (p, x , t)

1dr(p, x , t)
.
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The flea gas algorithm
→ A molecular dynamics
algorithm which solves GHD.
We want to reproduce

∆x = E ′(p)∆t +
∑

n

ϕ(p − pn) · (±1)

as it can be shown that

〈∆x〉 = veff(p)∆t .

(i) Particles travel freely at
v(p) and, when they collide,
they jump instantly.

(ii) They keep track of their
encounters.

(iii) We account for inside-jumps
via a recursive procedure.
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Take home message

Hydrodynamics
+

TBA on integrable systems
⇓

GHD = S−1
in ( Liouville equations )

Thanks for your attention!
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