Generalized Hydrodynamics

Davide Venturelli

SISSA, Trieste

05.05.2020

Outline

Hydrodynamics

Maximal entropy states and thermodynamics Euler hydrodynamics

Integrable systems and TBA

Scattering map in integrable systems Thermodynamic Bethe Ansatz

Generalized Hydrodynamics

Fundamental equations Solution by characteristics Geometric interpretation External force fields The flea gas algorithm

Maximal entropy states

Setting: homogeneous many-body 1d system of ∞ length, with short-range interactions. Let the system admit a set of conserved charges

$${\cal Q}_i = \int {
m d} x \, ilde q_i(x,t) \;, \qquad rac{\partial {\cal Q}_i}{\partial t} = 0$$

where $\tilde{q}_i(x,t)$ are a set of local densities s.t.

$$\partial_t \tilde{q}_i(x,t) + \partial_x \tilde{j}_i(x,t) = 0$$
.

After a long enough time, we expect any finite region to relax to a state described by the density matrix ρ , the rest of the system playing the role of a bath. This ρ maximizes the entropy

$$S = -\operatorname{Tr}\{\rho \log \rho\} \quad \rightarrow \quad \rho \sim e^{-\sum_i \beta^i Q_i}$$

Thermodynamics

Averages of observables, invariant under spacetime translations, are given by

$$egin{aligned} &\langle O
angle = {\mathsf{Tr}}\{
ho O\} = \langle O
angle_{ec{eta}} \ &-rac{\partial}{\partial eta^i} \left< O
angle_{ec{eta}} = \int \mathrm{d}x \left< O ilde{q}_i(x,0)
ight>^c_{ec{eta}} \end{aligned}$$

where the set of Lagrange parameters $\vec{\beta}$ specifies the state. In particular,

$$q_i \equiv \langle ilde{q}_i(0,0)
angle_{ec{eta}} \; , \qquad j_i \equiv ig\langle ilde{j}_i(0,0) ig
angle_{ec{eta}} \; .$$

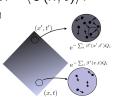
Since there are as many β_i as there are conserved densities q_i , the set of averages $\vec{\mathbf{q}}$ can in fact be used to fully characterize the state. This leads to the equations of state $j_i = j_i(\vec{\mathbf{q}})$.

Euler hydrodynamics

Real states are inhomogeneous/dynamical: $\langle O(x,t) \rangle$. Assumption: local entropy maximisation

 $\langle O(x,t)\rangle \simeq \langle O(0,0)\rangle_{\vec{\beta}(x,t)}$

where (x, t) is a fluid cell (separation of scales). Calling



$$q_i(x,t) \equiv \langle \tilde{q}_i(0,0) \rangle_{\vec{\beta}(x,t)} , \qquad j_i(x,t) \equiv \left\langle \tilde{j}_i(0,0) \right\rangle_{\vec{\beta}(x,t)}$$

leads to Euler hydrodynamic equations

 $\partial_t q_i(x,t) + \partial_x j_i(x,t) = 0$,

which can be cast in their quasilinear form by defining the flux Jacobian

$$\mathcal{A}_i^{\,j}(ec{\mathbf{q}}(x,t))\equiv rac{\partial j_i(ec{\mathbf{q}})}{\partial q_j} \quad o \quad \partial_t q_i(x,t) + \sum_j \mathcal{A}_i^{\,j}(x,t) \partial_x q_j(x,t) = 0 \; .$$

Normal modes, entropy

▶ Diagonalizing A_i^j we get the effective velocities $RAR^{-1} = \operatorname{diag}(v_i^{\text{eff}}).$

If we can find functions $n_i(\vec{\mathbf{q}})$ (normal modes) s.t.

$$R_i^{j} = \frac{\partial n_i}{\partial q_j} \quad \rightarrow \quad \partial_t n_i + v_i^{\text{eff}} \partial_x n_i = 0$$

i.e. n_i is convectively transported at $v_i^{\text{eff}}(\vec{n})$. \blacktriangleright Define a *free energy* and *free energy flux* s.t.

$$q_i = rac{\partial f}{\partial eta^i} \;, \qquad j_i = rac{\partial g}{\partial eta^i} \;.$$

hence the entropy density and its current

$$s = \sum_i \beta^i q_i - f$$
, $j_s = \sum_i \beta^i j_i - g$.

Euler equations conserve entropy:

$$\partial_t s + \partial_x j_s = 0$$

Davide Venturelli (SISSA, Trieste)

Scattering map in integrable systems

Integrable system: ∞ conserved quantities with local densities. Maximal entropy states still have the form (Generalized Gibbs Ensemble)

$$ho \sim e^{-\sum_i eta^i Q_i} \sim e^{-Q_w}$$

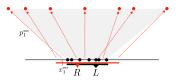
Scattering map: a recipe

- 1. Choose a vacuum
- 2. Excite the system over some region [0, L]
- 3. Step to asymptotic coordinates, *i.e.* let the system evolve for $t \gg 1$ on the line, until the density is null and the excitations are far apart
- 4. Put a measure on such coordinates and send $L \to \infty$ to obtain the thermodynamics

Asymptotic coordinates

Consider a set of particles with repulsive interactions, described by the canonical coordinates

$$\{x_n, p_m\} = \delta_{n,m} \; .$$



Let evolve until $x_1 \ll x_2 \ll ... \ll x_n$, $p_n < p_{n-1}$. Here the potential won't be felt anymore and the evolution will be free:

$$\begin{cases} x_n(0) & \xrightarrow{\mathcal{H}} \\ p_n(0) & \xrightarrow{t^* \gg 1} \end{cases} \begin{cases} x_n(t^*) & \xrightarrow{\mathcal{H}_{\text{free}}} \\ p_n(t^*) \equiv p_n^{\text{out}} & \xrightarrow{-t^*} \end{cases} \begin{cases} x_n^{\text{out}} = x_n(t^*) - p_n^{\text{out}}t^* \\ p_n^{\text{out}} \end{cases}$$

This defines the canonical maps

$$\{x_n, p_n\} \xrightarrow{S_{\text{out}}} \{x_n^{\text{out}}, p_n^{\text{out}}\} , \qquad \{x_n, p_n\} \xrightarrow{S_{\text{in}}} \{x_n^{\text{in}}, p_n^{\text{in}}\} .$$

Davide Venturelli (SISSA, Trieste)

Some consequences

Conserved charges, being local (or quasi-local), can only depend on the asymptotic momenta when the particles are far apart:

$$Q_w = \sum_i eta^i Q_i \equiv \sum_n w(p_n^{ ext{out}}) \;, \qquad w(p) = \sum_i eta^i h_i(p) \;.$$

- Scattering can be viewed as $S_{out} \circ S_{in}^{-1}$.
- The charges Q_i commute with \mathcal{H} and they can be thought as generators of nonlinear transformations acting on the asymptotic coordinates. This implies the factorization of scattering into 2-body processes.

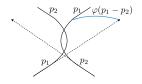
In 1+1 dimensions, this means elastic scattering:

$$\left\{p_n^{ t in}
ight\} = \left\{p_n^{ t out}
ight\}$$
 .

Davide Venturelli (SISSA, Trieste)

Quasiparticles

Quasiparticle: it's a tracer attached to real particles which jumps from particle to particle at collisions, following a given momentum. We label them by p_n^{in} .



Each scattering event is described by a 2-body shift $\varphi(p_n - p_m)$. Summing over all of them,

$$x_n^{\texttt{out}} = x_n^{\texttt{in}} - \sum_{m > n} \varphi(p_n^{\texttt{in}} - p_m^{\texttt{in}}) + \sum_{m < n} \varphi(p_n^{\texttt{in}} - p_m^{\texttt{in}}) \; .$$

This can be used to approximate S_{in} :

$$x_n^{ ext{in}} \simeq x_n + \left(\sum_{m > n, x_m < x_n} - \sum_{m < n, x_m > x_n}
ight) arphi(p_n^{ ext{in}} - p_m^{ ext{in}}) \; .$$

Davide Venturelli (SISSA, Trieste)

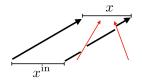
Quasiparticle description of thermodynamics

Let's compute the canonical partition function

$$\begin{aligned} \mathcal{Z} &= \int_{x_n \in [0,L]} \prod_{n=1}^N \mathrm{d} x_n \, \mathrm{d} p_n \, e^{-\sum_i \beta^i Q_i} \\ &\longrightarrow \int \prod_n \mathrm{d} p_n^{\mathrm{in}} \, e^{-\sum_n w(p_n^{\mathrm{in}})} \underbrace{\int_{x_n \in [0,L]} \prod_n \mathrm{d} x_n^{\mathrm{in}}}_{R^N} \end{aligned}$$

where the volume contribution from quasiparticle n is

$$R = L + \sum_{m \neq n} \varphi(p_n^{\text{in}} - p_m^{\text{in}})$$
.



Quasiparticle description of thermodynamics

In the limit $N, L \to \infty$ at fixed density, define the density of quasiparticles

$$\rho_{p}(p_{n}) = \lim_{N,L\to\infty} \frac{1}{L(p_{n+1}-p_{n})}$$

$$rac{1}{L}\sum_n f(p_n^{\mathrm{in}}) \quad o \quad \int \mathrm{d}p \, \rho_p(p) f(p) \; .$$

Rewrite the volume contribution in term of the density of space $\rho_s(p)$,

$$\frac{R}{L} = 1 + \frac{1}{L} \sum_{m \neq n} \varphi(\boldsymbol{p}_n^{\text{in}} - \boldsymbol{p}_m^{\text{in}}) \quad \rightarrow \quad 2\pi \rho_s(\boldsymbol{p}_n^{\text{in}}) = 1 + \int \mathrm{d}\boldsymbol{p} \, \rho_p(\boldsymbol{p}) \varphi(\boldsymbol{p}_n^{\text{in}} - \boldsymbol{p}) \; .$$

Finally, construct the grancanonical partition function and perform a large deviation analysis.

Davide Venturelli (SISSA, Trieste)

Thermodynamic Bethe Ansatz: ingredients

- 1. Spectral space
- 2. Scattering shift $\varphi(p-p')$ (from 2-body scattering)
- 3. Free energy function $F(\epsilon)$, or occupation function $n(\epsilon) = \frac{\mathrm{d}F(\epsilon)}{\mathrm{d}\epsilon}$, e.g. for fermions/bosons

$$n(\epsilon)=(e^{\epsilon}\pm 1)^{-1}$$
 .

4. The functions $h_i(p)$ which specify the conserved quantities, $Q_i = \sum_n h_i(p_n^{in})$. For example, in QM

$$Q_i | p_1, p_2, ..., p_N
angle = \sum_n h_i(p_n) | p_1, p_2, ..., p_N
angle \; .$$

5. The source term $w(p) = \sum_i \beta^i h_i(p)$, which specifies the state. For example, in QM, w(p) is the one-particle eigenvalue of $\sum_i \beta^i Q_i$.

Thermodynamic Bethe Ansatz: results

Energy contribution of the quasiparticle p

$$\epsilon(\mathbf{p}) = w(\mathbf{p}) + \int \frac{\mathrm{d}\mathbf{p}'}{2\pi} \varphi(\mathbf{p} - \mathbf{p}') F(\epsilon(\mathbf{p}'))$$

Dressing operation

$$f^{\mathrm{dr}}(p) = f(p) + \int \frac{\mathrm{d}p'}{2\pi} \varphi(p - p') n(p') f^{\mathrm{dr}}(p')$$

where n(p) is the occupation function

$$n(p) = \left. \frac{\mathrm{d}F(\epsilon)}{\mathrm{d}\epsilon} \right|_{\epsilon = \epsilon(p)}$$

We can then rewrite

$$\rho_p(p) = \frac{1}{2\pi} 1^{\mathrm{dr}}(p) n(p) , \quad \rho_s(p) = \frac{1}{2\pi} 1^{\mathrm{dr}}(p) \quad \rightarrow \quad n(p) = \frac{\rho_p(p)}{\rho_s(p)}$$

Davide Venturelli (SISSA, Trieste)

Charges and currents

Charge/entropy densities are constructed as

$$q_i = \int \mathrm{d}p \, \rho_p(p) h_i(p) \;, \quad s = \int \mathrm{d}p \, \rho_s(p) \left[\epsilon(p) n(p) - F(\epsilon(p)) \right] \;.$$

Currents require a definition of time. We need as an extra ingredient the energy function

$$E(p) = h_k(p)$$
 s.t. $\mathcal{H} \equiv Q_k = \sum_n h_k(p_n^{\mathrm{in}})$.

This allows to define an effective velocity

$$v^{\text{eff}}(p) = \frac{(E')^{\text{dr}}(p)}{1^{\text{dr}}(p)} = \frac{(E')^{\text{dr}}(p)}{2\pi\rho_s(p)}$$
finally the fluxes

$$j_i = \int \mathrm{d}p \,\rho_p(p) v^{\text{eff}}(p) h_i(p) \,, \quad j_s = \int \mathrm{d}p \,\rho_s(p) v^{\text{eff}}(p) \left[\epsilon(p) n(p) - F(\epsilon(p))\right] \,.$$

Davide Venturelli (SISSA, Trieste)

and

Fundamental equations

In scattering theory (with TBA),

 $\{\beta^i\} \leftrightarrow \{q_i\} \leftrightarrow \rho_p(p) \leftrightarrow n(p) \leftrightarrow w(p) \leftrightarrow \epsilon(p)$

are all equivalent ways of describing the state of the system. In hydrodynamics, each fluid cell (x, t) has its maximal entropy state:

$$\rho_p(p) \rightarrow \rho_p(p, x, t).$$

The conservation equations become

$$\int \mathrm{d} p \, h_i(p) \left\{ \partial_t \rho_p + \partial_x \left(v^{\text{eff}} \rho_p \right) \right\} = \mathbf{0} \ .$$

If $\{h_i\}$ form a complete set, we get the GHD equations

$$\partial_t \rho_p(p, x, t) + \partial_x \left[v^{\texttt{eff}}(p, x, t) \rho_p(p, x, t) \right] = 0$$

$$v^{\texttt{eff}}(\boldsymbol{p},\boldsymbol{x},t) = E'(\boldsymbol{p}) + \int \mathrm{d}\boldsymbol{p}' \; \boldsymbol{\varphi}(\boldsymbol{p}-\boldsymbol{p}') \rho_{\boldsymbol{p}}(\boldsymbol{p}',\boldsymbol{x},t) \left[v^{\texttt{eff}}(\boldsymbol{p}',\boldsymbol{x},t) - v^{\texttt{eff}}(\boldsymbol{p},\boldsymbol{x},t) \right] \; .$$

Davide Venturelli (SISSA, Trieste)

Conservation laws and normal modes

Again, entropy is conserved:

 $\partial_t s + \partial_x j_s = 0$.

The occupation function n(p) gives the GHD normal modes

$$\partial_t n(p, x, t) + v^{\text{eff}}(p, x, t) \partial_x n(p, x, t) = 0$$

i.e. the density of quasiparticle per unit available space in asymptotic coordinates is convectively transported by the GHD flow, along the characteristic curve with $v^{\text{eff}}(p, x, t)$.

Any r(n) gives rise to a conservation law:

$$\partial_t \left[\rho_p \cdot r(n) \right] + \partial_x \left[v^{\texttt{eff}} \cdot \rho_p \cdot r(n) \right] = 0 \; .$$

Choosing in particular $r = \frac{1}{n}$,

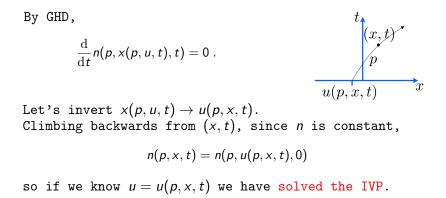
$$\partial_t \rho_s + \partial_x \left[v^{\text{eff}} \rho_s \right] = 0 \; .$$

Davide Venturelli (SISSA, Trieste)

Solution by characteristics

Define the characteristic curve starting at position u

$$t \mapsto x(p, u, t) : \begin{cases} x(p, u, 0) = u \\ \partial_t x(p, u, t) = v^{\text{eff}}(p, x(p, u, t), t) \end{cases}$$



Davide Venturelli (SISSA, Trieste)

Generalized Hydrodynamics

05.05.2020 19 / 25

Equation for u(p, x, t)The function u(p, x, t) satisfies, just like *n*,

 $\partial_t u(p, x, t) + v^{\text{eff}}(p, x, t) \partial_x u(p, x, t) = 0$

with the initial condition u(p, x, 0) = x.

Example: free model $v^{\text{eff}}(p) \equiv v(p) = E'(p)$ for any state. Then x = u + v(p)t.

Suppose the system is asymptotically homogeneous on the far left ($x \le x_0 \ll 0$) and does not evolve. Let

$$\hat{\mathbf{v}}(\mathbf{p})\equiv 2\pi
ho_s(\mathbf{p},-\infty,\mathbf{0})\mathbf{v}^{\texttt{eff}}(\mathbf{p},-\infty,\mathbf{0})\;.$$

Then *u* is determined by

$$2\pi\left\{\int_{x_0}^u \mathrm{d}y\,\rho_s(p,y,0)-\int_{x_0}^x \mathrm{d}y\,\rho_s(p,y,t)\right\}+\hat{v}(p)\cdot t=0\;.$$

Davide Venturelli (SISSA, Trieste)

Geometric interpretation

Define a new space coordinate

$$\mathrm{d}\hat{x} = 2\pi\rho_s(p, x, t)\,\mathrm{d}x \ , \qquad \hat{x}(p, t) = \int_{x_0}^x 2\pi\rho_s(p, y, t)\,\mathrm{d}y \ .$$

In these terms, the equation for u becomes simply

$$\hat{x}(p,t) = \hat{u}(p,0) + \hat{v}(p) \cdot t$$
.

This change of metric trivializes the fluid equation,

$$\partial_t \hat{n}(p, \hat{x}, t) + \hat{v}(p) \partial_{\hat{x}} \hat{n}(p, \hat{x}, t) = 0$$

because \hat{x} is the space perceived by asymptotic particles, whose evolution is trivial:

$$x_n^{\mathrm{in}}(t) = x_n^{\mathrm{in}} + p_n^{\mathrm{in}} \cdot t \;, \quad p_n^{\mathrm{in}}(t) = p_n^{\mathrm{in}} \;.$$

Being $n=rac{
ho_p}{
ho_s}$ the density in asymptotic phase space, GHD = $S_{\rm in}^{-1}$ (Liouville equations) .

Davide Venturelli (SISSA, Trieste)

External force fields

Let's add a potential $\mathcal{H} \mapsto \mathcal{H} + V(x)$ which breaks momentum conservation. Can we still use GHD? \rightarrow Yes, if V(x) varies slowly: then each fluid cell will still locally maximize entropy.

Example: Lieb-Liniger model with external V(x)

$$\mathcal{H} = \int \mathrm{d}x \left\{ \frac{1}{2} \partial_x \Psi^{\dagger} \partial_x \Psi + g \Psi^{\dagger} \Psi^{\dagger} \Psi \Psi + V(x) \Psi^{\dagger}(x) \Psi(x) \right\}$$

Rewrite $\mathcal{H}(x) = \mathcal{H}_{LL} + V(x)Q_0$, where

$$\mathcal{H}_{LL} = \int_x \mathrm{d}y \left\{ rac{1}{2} \partial_y \Psi^\dagger \partial_y \Psi + g \Psi^\dagger \Psi^\dagger \Psi \Psi
ight\} \;, ~~ Q_0 = \int_x \mathrm{d}y \, \Psi^\dagger \Psi \;.$$

This gives the local energy function

$$E(p,x)=\frac{p^2}{2}+V(x)$$

Davide Venturelli (SISSA, Trieste)

GHD equations with external V(x)

In general, one could couple a field to any charge:

$$\mathcal{H}(x) = \mathcal{H}_{LL} + \sum_i V^i(x)Q_i \quad \rightarrow \quad E(p,x) = \frac{p^2}{2} + \sum_i V^i(x)h_i(x) \;.$$

~

The effective velocity gets modified as

$$v^{eff}(\rho, x, t) = \frac{[E'(\cdot, x)]^{dr}(\rho, x, t)}{1^{dr}(\rho, x, t)}$$

GHD equations acquire a new term

$$\partial_t \rho_p + \partial_x \left(v^{\texttt{eff}} \rho_p \right) + \partial_p \left(a^{\texttt{eff}} \rho_p \right) = 0$$

where we introduced the effective acceleration

$$a^{eff}(p,x,t) = \frac{\left[-\partial_x E(\cdot,x)\right]^{dr}(p,x,t)}{1^{dr}(p,x,t)}$$

Davide Venturelli (SISSA, Trieste)

The flea gas algorithm

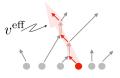
 \rightarrow A molecular dynamics algorithm which solves GHD. We want to reproduce

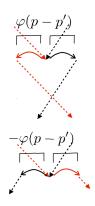
$$\Delta x = E'(p)\Delta t + \sum_{n} \varphi(p - p_n) \cdot (\pm 1)$$

as it can be shown that

 $\langle \Delta x
angle = v^{\tt eff}(p) \Delta t$.

- (i) Particles travel freely at v(p) and, when they collide, they jump instantly.
- (ii) They keep track of their encounters.
- (iii) We account for *inside-jumps* via a recursive procedure.





Take home message

Hydrodynamics + TBA on integrable systems \Downarrow GHD = S_{in}^{-1} (Liouville equations)

Thanks for your attention!

Davide Venturelli (SISSA, Trieste)

Generalized Hydrodynamics

05.05.2020 25 / 25

