Growth processes and Random Matrices

Davide Venturelli

SISSA, Trieste

3 July 2020

Outline

Interacting particle systems

Exclusion processes Growth phenomena Hydrodynamic limit KPZ equation

Random Matrix Theory

Gaussian ensembles Largest eigenvalue statistics Ulam's problem Mapping growth problems on RMT

Explicit examples

dTASEP with step initial conditions KPZ: map on directed polymer

Outline

Interacting particle systems

Exclusion processes Growth phenomena Hydrodynamic limit KPZ equation

Random Matrix Theory

Gaussian ensembles Largest eigenvalue statistics Ulam's problem Mapping growth problems on RMT

Explicit examples

dTASEP with step initial conditions KPZ: map on directed polymer

Interacting particle systems

- Non equilibrium stationary states (NESS): systems which are kept out of equilibrium by external influences. Macroscopic state variables are time-independent, but there are non-vanishing microscopic currents.
- Examples: heat conduction (Fourier's law), diffusion (Fick's law), electric conduction (Ohm's law).
- An alternative to the Hamiltonian description is to start from a stochastic microscopic dynamics in terms of *interacting particle systems*: they are lattice models with a discrete set of states associated to each site, and local interactions.

Exclusion processes

Setting: identical particles on a lattice $\Omega \subset \mathbb{Z}^d$. A configuration is specified by $\mathbf{n} = \{n_x\}_{x \in \Omega} \in \{0, 1\}^{\Omega}$.

Dynamics:

- (i) Each particle carries a clock which rings according to a Poisson process
- (ii) When the clock rings, particle at x attempts to jump in y with probability $q_{xy}(\mathbf{n})$

(iii) If y is empty, the jump is performed.

Assume: d = 1, homogeneous, no interactions, nearest neighbour hoppings. Then

$$q_{xy} = q\delta_{y,x+1} + (1-q)\delta_{y,x-1}$$

 \rightarrow SSEP, ASEP, TASEP...

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 3 / 33

Mapping to a growth model (Rost '81)

Let's map on the height configuration $\{n_x\} \longleftrightarrow \left\{h_{x+\frac{1}{2}}\right\}$ by fixing $h_{\frac{1}{2}} = 0$ and

$$h_{x+\frac{1}{2}} - h_{x-\frac{1}{2}} = \frac{1}{2} - n_x = \pm \frac{1}{2}$$
.

This is known as single step model. Notice

 $h_{x+\frac{1}{2}}(t) - h_{x+\frac{1}{2}}(0) = \text{net } \# \text{ of particles which crossed the}$ bond (x, x+1) from left to right up to time t.

Choosing the initial condition

$$\begin{cases} n_x = \mathbf{1} - \theta(x) \\ x_j(t=0) = -j \end{cases} \longleftrightarrow \quad h_{x+\frac{1}{2}}(0) = \frac{1}{2}|x|$$

we get a corner growth model. Rotating by 45° gives the net # of jumps a given particle has performed as a function of its label j.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

Growth phenomena

 Experimentally we observe, at late times,

$$egin{aligned} &\langle h(t)
angle \sim t \ & w = \sqrt{\langle (h-\langle h
angle)^2
angle} \sim t^{rac{1}{3}} \ . \end{aligned}$$

Smells like universal!

Many simple growth models (Eden, PNG, DP in a random medium, AEP...) indeed predict

$$h(t) = vt + \chi t^{\frac{1}{3}} .$$

Hydrodynamics

How does deterministic evolution emerge from stochastic microscopic dynamics on large scales?

Particle density: $\rho = \langle n_x \rangle$ Stationary particle current: net # of particles jumping $x \to x + 1$ per unit time. We look for $J(\rho)$.

Example: ASEP on a ring

$$\langle n_X(1-n_{X+1})\rangle = \langle n_{X+1}(1-n_X)\rangle = \frac{N}{L} \cdot \frac{L-N}{L-1}$$

so that at fixed $ho={\it N}/{\it L}$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 6 / 33

Hydrodynamics

Start from a slowly varying $\rho(x,0)$ (say, on a scale /). Since particle density is locally conserved,

$$\partial_t \rho(x,t) + \partial_x j(x,t) = 0$$
.

For $l
ightarrow \infty$, we expect j(x,t)
ightarrow J(
ho(x,t)), so that

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial x}J(\rho) = 0$$

• What about fluctuations? Expanding around $\rho(x,t) = \overline{\rho} + u(x,t)$ up to 2nd order we get

$$\frac{\partial u}{\partial t} + c\frac{\partial u}{\partial x} + \lambda u\frac{\partial u}{\partial x} = 0$$

where

$$c \equiv \left. \frac{\mathrm{d}J}{\mathrm{d}
ho} \right|_{ar
ho} \,, \quad \lambda \equiv \left. \frac{\mathrm{d}^2 J}{\mathrm{d}
ho^2} \right|_{ar
ho}$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 7 / 33

Hydrodynamics

Start from a slowly varying $\rho(x,0)$ (say, on a scale /). Since particle density is locally conserved,

$$\partial_t \rho(x,t) + \partial_x j(x,t) = 0$$
.

For $l
ightarrow \infty$, we expect j(x,t)
ightarrow J(
ho(x,t)), so that

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial x}J(\rho) = 0$$

• What about fluctuations? Expanding around $\rho(x,t) = \bar{\rho} + u(x,t)$ up to 2nd order we get

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} + \lambda u \frac{\partial u}{\partial x} = 0$$

where

$$c \equiv \left. \frac{\mathrm{d}J}{\mathrm{d}
ho} \right|_{ar{
ho}} \,, \quad \lambda \equiv \left. \frac{\mathrm{d}^2 J}{\mathrm{d}
ho^2} \right|_{ar{
ho}}$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 7 / 33

From Euler to KPZ

Stepping to a comoving frame we get the inviscid Burgers equation

$$u_t + \lambda u u_x = 0$$
 .

Let's introduce fluctuation/dissipation: we get the stochastic Burgers equation

$$u_t + \lambda u u_x = \nu u_{xx} - \zeta_x$$

$$\langle \zeta \rangle = \mathbf{0} , \qquad \left\langle \zeta(x,t)\zeta(x',t') \right\rangle = D\delta(x-x')\delta(t-t')$$

which has a conservation form, with a current

$$\partial_x j(x,t) = \lambda u u_x - \nu u_{xx} + \zeta_x .$$

• Let u(x,0) = 0 and define the height function

$$h(x,t) = \int_0^t j(x,s) \, \mathrm{d}s$$

so that $\partial_x h = -u$. This gives the KPZ equation

$$\partial_t h = \nu \nabla^2 h + \frac{\lambda}{2} \left(\boldsymbol{\nabla} h \right)^2 + \zeta$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

3 July 2020 8 / 33

KPZ (1986): an effective model for growth

$$\partial_t h = \nu \nabla^2 h + \frac{\lambda}{2} \left(\boldsymbol{\nabla} h \right)^2 + \zeta$$

- ▶ $\nabla^2 h$ tries to smoothen the surface (opposing the noise), while $(\nabla h)^2$ drives the system out of equilibrium.
- This is the simplest nonlinear, local differential equation governing the growth of a profile (higher order terms would be irrelevant).
- Growth occurs mainly at an "active" zone on the surface of the cluster, in a direction normal to the interface:

$$\delta h = \sqrt{(v\delta t)^2 + (v\delta t \nabla h)^2}$$
$$\dot{h} = v\sqrt{1 + (\nabla h)^2} \simeq v + \frac{v}{2}(\nabla h)^2 + \dots$$

KPZ (1986): scaling

Construct the adimensional quantity

$$ar{h} = rac{h}{\left(rac{D^2}{
u^2}|\lambda|t
ight)^{rac{1}{3}}}$$

We expect its fluctuations to exhibit a universal distribution.

KPZ proved by Dynamical Renormalization Group that the interface width grows as

$$w(R,t) \sim R^{\chi} w_0(R,t) \sim t^{\frac{\chi}{2}} w_0(\mathcal{O}(1)) \sim t^{\frac{1}{3}} \; ,$$

being $z = \frac{3}{2}$, $\chi = \frac{1}{2}$ in d = 1.

Does the universality hold beyond the 2nd moment?

Outline

Interacting particle systems

Exclusion processes Growth phenomena Hydrodynamic limit KPZ equation

Random Matrix Theory

Gaussian ensembles Largest eigenvalue statistics Ulam's problem Mapping growth problems on RMT

Explicit examples

dTASEP with step initial conditions KPZ: map on directed polymer

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

Reminder: Gaussian random matrices

Gaussian random matrix: the jpdf of its entries is given by

$$\mathcal{P}[M] \propto e^{-eta rac{N}{2} \, {
m Tr} \, M^2}$$

and that of its eigenvalues by (Wigner '51)

$$\mathcal{P}(\lambda_1,\ldots,\lambda_N) \propto e^{-rac{eta}{2}N\sum_{i=1}^N\lambda_i^2}\prod_{j< k}|\lambda_j-\lambda_k|^eta\;.$$

$$egin{aligned} \mathcal{P}(\lambda_1,\ldots,\lambda_N) &= C_N |\Delta(ec{\lambda})|^eta arphi(\mathsf{Tr}\,M,\mathsf{Tr}\,M^2,\ldots,\mathsf{Tr}\,M^N) \ &\equiv rac{1}{\mathcal{Z}_N} |\Delta(ec{\lambda})|^eta e^{-\sum_{i=1}^N V(\lambda_i)} \,. \end{aligned}$$

The N real eigenvalues are strongly correlated variables. They admit the Coulomb gas interpretation (Dyson '62)

$$\mathcal{P}(\lambda_1,\ldots,\lambda_N) = \frac{1}{\mathcal{Z}_N} e^{-\frac{\beta}{2} \left\{ N \sum_{i=1}^N \lambda_i^2 - \sum_{j \neq k} \log |\lambda_j - \lambda_k| \right\}}$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 12 / 33

Spectral density

$$\rho(\lambda, N) = \left\langle \frac{1}{N} \sum_{i=1}^{N} \delta(\lambda - \lambda_i) \right\rangle$$

$$\xrightarrow{N \to \infty} \rho(\lambda) = \frac{1}{\pi} \sqrt{2 - \lambda^2} .$$

$$\stackrel{N \to \infty}{\longrightarrow} \rho(\lambda) = \frac{1}{\pi} \sqrt{2 - \lambda^2} .$$

There are 2 length scales in this problem:

1. Bulk interparticle distance

$$\int_0^{h_{ t {bulk}}}
ho(\lambda, N) \, \mathrm{d}\lambda \cong rac{1}{N} \quad o \quad h_{ t {bulk}} \sim N^{-1} \; .$$

2. Edges

$$\int_{\sqrt{2}-\mathit{I}_{\mathrm{edge}}}^{\sqrt{2}}
ho(\lambda, \mathit{N}) \, \mathrm{d}\lambda \cong rac{1}{\mathit{N}} ~~
ightarrow ~~ \mathit{I}_{\mathrm{edge}} \sim \mathit{N}^{-rac{2}{3}} ~.$$

 $\longrightarrow~{\it I}_{\rm edge} \gg {\it I}_{\rm bulk}$.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

3 July 2020 13 / 33

ا م م ا

Largest eigenvalue statistics

$$\langle \lambda_{ m max}
angle = \sqrt{2} \;, \qquad |\lambda_{ m max} - \sqrt{2}| \sim I_{ m edge} \sim N^{-rac{2}{3}} \;.$$

Tracy&Widom ('94) show that, for large N, typical fluctuations behave as

For $\beta=2$ (GUE),

$$F_2(s) = \det(\mathbb{I} - P_s A P_s)$$

where P_s projects on $[s,+\infty)$ and A is the Airy kernel

$$A(a,b) = \int_{0}^{\infty} Ai(a+t)Ai(b+t) = \frac{Ai(a)Ai'(b) - Ai'(a)Ai(b)}{a-b}$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 14 / 33

Ulam's problem (1961)

- (i) Take a sequence of n integers and consider any one of the n! permutations.
- (ii) For each of them, construct all possible increasing subsequences and take the longest; let L_n be its length.

 L_n is a random variable: it fluctuates from one permutation to another, and each one occurs with equal probability $\frac{1}{n!}$.

Ulam's problem (LIS): what is the statistics of L_n ?

Baik, Deift, Johansson (1999):

$$L_n = 2\sqrt{n} + n^{\frac{1}{6}}\chi_2$$

with the same χ_2 as in GUE (Tracy-Widom).

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 15 / 33

Mapping growth problems on RMT

In growth models, In Ulam's problem,
$$h(t) = vt + t^{\frac{1}{3}}\chi_2$$
. $L_n = 2\sqrt{n} + n^{\frac{1}{6}}\chi_2$.

Under the exact mapping $h(t) \longleftrightarrow L_{n=t^2}$ one finds the distribution $\mathcal{P}(H,t)$ of the centered height function

$$H = h(x,t) - \langle h(x,t) \rangle$$

to be

$$\mathcal{P}(H,t) \xrightarrow[t\gg1]{} \frac{1}{ct^{\frac{1}{3}}} f_2\left(\frac{H}{ct^{\frac{1}{3}}}\right)$$

where $f_2(x)$ is universal.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

3 July 2020 16 / 33

Outline

Interacting particle systems

Exclusion processes Growth phenomena Hydrodynamic limit KPZ equation

Random Matrix Theory

Gaussian ensembles Largest eigenvalue statistics Ulam's problem Mapping growth problems on RMT

Explicit examples

dTASEP with step initial conditions KPZ: map on directed polymer

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

dTASEP (d = 1)

Particles on a line, $x_j(t) \in \mathbb{Z}$ at times t = 0, 1, 2...Step initial conditions: $x_j(t=0) = -j$, j = 0, 1, 2...At each time step, a jump to the right is attempted independently by all particles with probability q, but it's discarded if the receiving site is occupied.

Define the flux

 $h_r(t) = \#$ of particles which crossed the bond (r, r+1) up to time t.

The stationary current can be computed exactly from hydrodynamics ($\rho=\frac{1}{2})\,,$

$$J_q(
ho)=rac{1}{2}\left(1-\sqrt{1-4q
ho(1-
ho)}
ight)$$

so we expect $h_0(t) \sim J_q t$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

dTASEP

Defining

$$Z_q(t) \equiv \frac{h_0(t) - J_q t}{t^{\frac{1}{3}}}$$

we expect $\sigma_{Z_q}^2 \xrightarrow{t \gg 1} finite$. This reminds of CLT, but the limiting distribution is not Gaussian. T&W found for GUE

$${\it Prob}\left(rac{\lambda_{\max}({\it M})-\sqrt{2N}}{(8N)^{-rac{1}{6}}}\leq s
ight) \xrightarrow[N
ightarrow {\it F}_2(s) \;.$$

Theorem (Johansson 2000)

$$Prob\left(rac{h_0(t)-J_qt}{Vt^{rac{1}{3}}}\leq s
ight) \xrightarrow[t o\infty]{t o\infty} 1-F_2(-s)$$

with
$$V = \left(2^{-4}q\sqrt{1-q}\right)^{rac{1}{3}}.$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

3 July 2020 19 / 33

PROOF part 1: dTASEP \rightarrow waiting times Define the jumping times

 $T(j,k) \equiv \min \{t \in \mathbb{N} : x_j(t) = x_j(0) + (k+1) = -j + (k+1)\}$ = time at which particle j has completed its $(k+1)^{\text{th}}$ jump.

By construction, since $x_k(0) = -k$, at time $T_k = T(k,k)$

$$x_0(T_k) > x_1(T_k) > \cdots > x_k(T_k) = 1 > 0 > x_{k+1}(T_k) > \ldots$$

so exactly (k+1) particles crossed the bond (0,1):

$$h_0(T_k) = k + 1$$
, $h_0(t < T_k) \le k$

 $Prob(h_0(t) \leq k) = Prob(T_k > t) = 1 - Prob(T(k,k) \leq t)$

Define the waiting times

 $w_{jk} = \#$ of times particle j stays on site $x_j(0) + k$ after it becomes possible to jump to the next, $x_j(0) + (k+1) = k + 1 - j$.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 20 / 33

Now notice (j, k > 0) $T(j, k) = 1 + w_{jk} + (\text{time at which this jump becomes possible})$ $= 1 + w_{jk} + \max \{T(j, k - 1), T(j - 1, k)\}$ $\xrightarrow{\text{by induction}} 1 + j + k + \max_{\phi:(0,0) \to (j,k)} \left(\sum_{(i,j) \in \phi} w_{ij}\right)$

i.e. maximize the total waiting time with the constraint that only right-downward steps are allowed.

▶ In order to compute $Prob(T(k,k) \le t)$, we only need the topleft (k+1)x(k+1) corner of the matrix of waiting times w_{ij} .

Let's count the number of (k+1)x(k+1) matrices $w_{ij} \in \mathbb{N}$ which satisfy

$$T(k,k) = 2k + 1 + \max_{\phi:(0,0) \to (k,k)} \left(\sum_{(i,j) \in \phi} w_{ij} \right) \le t$$
 . (*)

To each of these matrices W we give a (normalized) weight

$$f_W \equiv \displaystyle q^{(k+1)^2} \cdot \displaystyle (1-q)^{\sum_{ij} w_{ij}}$$
 # of decisions to jump # of decisions to stay

so that

$$Prob(T(k,k) \le t) = \sum_{W \in (*)} q^{(k+1)^2} \cdot (1-q)^{|W|_1}$$

PROOF part 2: waiting times \rightarrow random words

To each $W = w_{ij}$ we associate a list of pairs (i, j) listed in lexicographical order, with the rule

 $w_{ij} \equiv$ how often the pair (i,j) appears in the list.

This may be regarded as a random list of 2-letters words drawn from the alphabet $\{0, 1, \ldots, k\}$.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 25 / 33

PROOF part 2: waiting times \rightarrow random words

To each $W = w_{ij}$ we associate a list of pairs (i, j) listed in lexicographical order, with the rule

 $w_{ij} \equiv$ how often the pair (i,j) appears in the list.

$$\begin{pmatrix} 0 & 3 & 1 & 0 & 1 & \dots \\ 2 & 0 & 0 & 1 & 3 & \dots \\ 1 & 2 & 0 & 2 & ? & \dots \\ 2 & 0 & 2 & 1 & ? & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & \dots \\ 1 & 1 & 1 & 2 & 0 & 0 & 3 & 0 & 1 & 1 & 3 & 3 & 0 & 0 & 2 & 2 & \dots \\ \end{pmatrix}$$

This may be regarded as a random list of 2-letters words drawn from the alphabet $\{0, 1, \ldots, k\}$.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 25 / 33

PROOF part 2: waiting times \rightarrow random words

But any right-downward path $\phi \in W$ corresponds to a subsequence in this list which is weakly increasing in both rows, whence

$$Prob(T(k,k) \le t) = \sum_{\phi \in D(k,t)} q^{(k+1)^2} \cdot (1-q)^{|\phi|}$$

where

D(k,t) = set of finite sequences ϕ of lexicographically ordered 2-letter words from the alphabet $\{0, 1, \dots, k\}$ and for which the length of the longest subsequence of ϕ (weakly increasing in both letters) is at most t - 2k - 1.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 26 / 33

PROOF part 3: random words \rightarrow RMT

$$Prob(T(k,k) \le t) = \frac{C_{q,k}}{(k+1)!} \sum_{\substack{\vec{\mathbf{y}} \in \mathbb{Z}^{k+1} \\ 0 \le y_i \le t-k-1}} \Delta(\vec{\mathbf{y}})^2 \prod_{i=0}^k (1-q)^{y_i}$$

to be compared with the expression for GUE

$$extsf{Prob}\left(\lambda_{ extsf{max}} \leq \Lambda
ight) = rac{1}{\mathcal{Z}_{\mathcal{N}}} \int_{-\infty}^{\Lambda} \cdots \int_{-\infty}^{\Lambda} \Delta(ec{\lambda})^2 \prod_{j=1}^{\mathcal{N}} e^{-\lambda_j^2} \, \mathrm{d}\lambda_j \; \; .$$

In both cases we adopt the technique of orthogonal polynomials: both Meixner and Hermite polynomials have their asymptotic behavior (beyond their largest zero) described in terms of Airy functions.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 27 / 33

PROOF part 4: asymptotics

Define the weight functions $(x \in \mathbb{Z})$: $w_q(x) = \theta(x)(1-q)^{\times}$. Take $(p_j)_{j\geq 0}$ polynomials of degree j with leading coefficient γ_j and let

$$\varphi_j(x) \equiv p_j(x) \sqrt{w_q(x)}$$

By a property of Vandermonde determinants,

$$\left(\left.\det\varphi_{j}(y_{i})\right|_{\mathbf{0}\leq i,j\leq k}\right)^{\mathbf{2}}=\left(\gamma_{\mathbf{0}}\ldots\gamma_{k}\right)^{\mathbf{2}}\Delta(\vec{y})^{\mathbf{2}}\prod_{i=\mathbf{0}}^{k}(1-q)^{y_{i}}$$

and since moreover $(\det A)^2 = \det A^T A = \det \left(\sum_j A_{ji} A_{jk}\right)$ we can rewrite

$$Prob(T(k,k) \leq t) = \frac{C_{q,k}}{(\gamma_0 \dots \gamma_k)^2} \det S$$

$$(S)_{ij} = \sum_{x \in \mathbb{Z}} \varphi_i(x) \varphi_j(x) \left(1 - \chi_{[t-k,\infty)}(x) \right)$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 28 / 33

PROOF part 4: asymptotics

Choose $(p_j)_{j\geq 0}$ to be Meixner polynomials:

$$\sum_{x\in\mathbb{Z}}\varphi_i(x)\varphi_j(x)=\sum_{x\in\mathbb{Z}}p_i(x)p_j(x)w_q(x)=\delta_{ij}.$$

Letting $S = \mathbb{I} - R(t-k)$, with

$$(R(s))_{ij} = \sum_{x \in \mathbb{Z}} \varphi_i(x) \varphi_j(x) \chi_{[s,\infty)}(x) = \sum_{x \ge s} \varphi_i(x) \varphi_j(x)$$

we can rewrite

$$Prob\left(T(k,k) \leq t\right) = \frac{C_{q,k}}{\left(\gamma_0 \dots \gamma_k\right)^2} \det[\mathbb{I} - R(t-k)]$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 29 / 33

PROOF part 4: asymptotics

Choose $(p_j)_{j>0}$ to be Meixner polynomials:

$$\sum_{x\in\mathbb{Z}}\varphi_i(x)\varphi_j(x)=\sum_{x\in\mathbb{Z}}p_i(x)p_j(x)w_q(x)=\delta_{ij}.$$

Letting $S = \mathbb{I} - R(t-k)$, with

$$(R(s))_{ij} = \sum_{x \in \mathbb{Z}} \varphi_i(x) \varphi_j(x) \chi_{[s,\infty)}(x) = \sum_{x \ge s} \varphi_i(x) \varphi_j(x)$$

we can rewrite

$$Prob(T(k,k) \leq t) = \frac{C_{q,k}}{\left(\gamma_0 \cdots \gamma_k\right)^2} \det[\mathbb{I} - R(t-k)]$$

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 29 / 33

PROOF part 4: asymptotics Finally, we may interpret $R(s) = A(s) \circ B(s)$, with

$$B(s): \vec{\mathbf{u}} \in \mathbb{R}^{k+1} \quad \mapsto \quad f(x) = \sum_{j} u_{j} \varphi_{j}(x) \Big|_{[s,\infty)}$$
$$A(s): f(x) \quad \mapsto \quad \sum_{x \ge s} f(x)\varphi_{j}(x) , \quad j = 0, 1, \dots, k$$

and using $\det(\mathbb{I} - AB) = \det(\mathbb{I} - BA)$ we find

$$\boxed{\begin{array}{ll} Prob\left(T(k,k) \leq t\right) = \det[\mathbb{I} - \Gamma_k(t-k)] \\ \\ \Gamma_k(s): f(x) & \mapsto & \left(\sum_{y \geq s} \sigma_k(x,y)f(y)\right)_{x \geq s}, \quad \sigma_k(x,y) = \sum_{j=0}^k \varphi_j(x)\varphi_j(y) \end{array}}$$

 $Prob(h_0(t) \le k) = 1 - Prob(T(k,k) \le t) = 1 - det[\mathbb{I} - \Gamma_k(t-k)]$

Q.E.D.

What about KPZ itself?

$$\partial_t h = \nu \nabla^2 h + \frac{\lambda}{2} \left(\boldsymbol{\nabla} h \right)^2 + \zeta$$

It remained rather poorly understood until 2010! Non-rigorous approach: apply to KPZ equation the map

$$\begin{cases} Z(x,t) = e^{\frac{\lambda}{2\nu}h(x,t)} \\ T = 2\nu, \ V(x,t) = -\lambda\zeta(x,t) \end{cases} \longrightarrow \qquad \overrightarrow{\frac{\partial Z}{\partial t} = \frac{T}{2}\nabla^2 Z - \frac{1}{T}V(x,t)Z}$$

But this may be regarded as a Bloch equation for the propagator of a directed polymer in a random potential

$$Z(x,t|0,0) = \int_{\phi(0)=0}^{\phi(t)=x} \mathcal{D}\phi(\tau) e^{-\frac{1}{T}\int_{0}^{t} \mathrm{d}\tau \left\{\frac{1}{2}\left(\frac{\mathrm{d}\phi}{\mathrm{d}\tau}\right)^{2} + V(x(\tau),\tau)\right\}}$$

 $Z(x,0|0,0) = \delta(x)$, $\langle V(x,t)V(x',t')\rangle = D\lambda^2\delta(x-x')\delta(t-t')$.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 31 / 33

What about KPZ itself?

We are after the pdf of the height field

$$h(x,t) \equiv rac{2
u}{\lambda} \log Z \propto \underbrace{F}_{ ext{free energy}}$$

This can be found using replicas: the moments

$$Z_n \equiv \langle Z(x_1, t | y_1, 0) \dots Z(x_n, t | y_n, 0) \rangle$$

satisfy, by Feynman-Kac formula,

$$\partial_t Z_n = -\mathcal{H}_n Z_n$$
, $\mathcal{H}_n = -\sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} - 2D\lambda^2 \sum_{1 \le i < j \le n} \delta(x_i - x_j)$

i.e. the QM problem in imaginary time of *n* attractive particles subject to the Lieb-Liniger Hamiltonian. The exact solution is known by Bethe Ansatz!

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

Take home messages

• KPZ universality class: $h(t) \sim t$, $w(t) \sim t^{rac{1}{3}}$

 Growth models —> LIS ->> RMT : fluctuations are described by Tracy-Widom distribution.

Take home messages

• KPZ universality class: $h(t) \sim t$, $w(t) \sim t^{rac{1}{3}}$

 Growth models —> LIS ->> RMT : fluctuations are described by Tracy-Widom distribution.

Thanks for your attention!

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices

3 July 2020 33 / 3