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Interacting particle systems
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Interacting particle systems

> Non equilibrium stationary states (NESS): systems
which are kept out of equilibrium by external
influences. Macroscopic state variables are
time-independent, but there are non-vanishing
microscopic currents.

> Examples: heat conduction (Fourier’s law),
diffusion (Fick’s law), electric conduction (Ohm’s
law) .

» An alternative to the Hamiltonian description is
to start from a stochastic microscopic dynamics in
terms of interacting particle systems: they are
lattice models with a discrete set of states
associated to each site, and local interactions.
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Exclusion processes

Setting: identical particles on a lattice Q C Z9.
A configuration is specified by n = {n},q € {0,112,
Dynamics:

(i) Each particle carries a clock which rings
according to a Poisson process

(ii) When the clock rings, particle at x attempts to
jump in y with probability gy, (n)
(iii) If y is empty, the jump is performed.

Assume: d =1, homogeneous, no interactions, nearest
neighbour hoppings. Then

I ¢
qu - qéy,x-i-l + (1 - q)6y7x_1 .—.—m—.—.
1 i L
— SSEP, ASEP, TASEP...
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Mapping to a growth model (Rost ’81)
Let’s map on the height
configuration {n.} +— {hx+%}

by fixing hi1 =0 and
2

1 1

R N A SR S R R
Xfl ~ _nx ::I:f . 3-2-101 23 x)
2z 2 2

This is known as single step model. Notice

hx+%(t)—-hx+%(0):: net # of particles which crossed the
bond (x,x +1) from left to right up to time t.

Choosing the initial condition

ny =1—6(x) 1
{x,-(r R

we get a corner growth model. Rotating by 45° gives
the net # of jumps a given particle has performed as
a function of its label j.
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Growth phenomena

> Experimentally we
observe, at late times,

Smells like universal!

> Many simple growth
models (Eden, PNG, DP
in a random medium,
AEP...) indeed predict

h(t) = vt + xt3 .
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Hydrodynamics

How does deterministic evolution emerge from
stochastic microscopic dynamics on large scales?

Particle density: p= (ny)
Stationary particle current: net # of particles
jumping x — x 4+ 1 per unit time. We look for J(p).

> Example: ASEP on a ring

(me(1 = nx41)) = (nx+2(1 = nx)) =

~1
-
I
n

so that at fixed p=N/L

J= g nll = ne)) ~ (1 q) (1 - ng) = BIZDALZD)

—— (29 -1)p(1—p).

L—oo
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Hydrodynamics

» Start from a slowly varying p(x,0) (say, on a scale

). Since particle density is locally conserved,
Orp(x, t) + Oxj(x,t) =0.

For | — 0o, we expect j(x,t) — J(p(x,t)), so that

0 0
Fri + &J(P) =0

> What about fluctuations? Expanding around
p(x,t) =p+u(x,t) up to 2** order we get
ou ou ou
where
Wl
dpl|;’ — dp?

Cc =

p
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Hydrodynamics

» Start from a slowly varying p(x,0) (say, on a scale

). Since particle density is locally conserved,
Orp(x,t) + Oxj(x,t) =0.

For | — oo, we expect j(x,t) — J(p(x,t)), so that

o 0
p+ =J(p

8t (9)(() 0

> What about fluctuations? Expanding around
p(x,t) = p+u(x,t) up to 2°¢ order we get

ou 0 ou
oy 4 =
gt T Sox T Mgk 0
where
dJ d2J
c=—| , A=—
dp|; dp? |
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From Euler to KPZ

> Stepping to a comoving frame we get the inviscid
Burgers equation

us + Auu, =0,

> Let’s introduce fluctuation/dissipation: we get
the stochastic Burgers equation

Up + AUUx = DUy — (s

© =0,  (Cl ¢ ¢)) = Do(x — x)s(t — )
which has a conservation form, with a current

Oxj(X, t) = Auty — Viyx + Cx -
» Let u(x,0) =0 and define the height function

hix, t) = /O Cix.s)ds

so that Oxh = —u. This gives the KPZ equation

A
Och = vV2h + 5 (Vh? +¢
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KPZ (1986): an effective model for growth

A
dch = vV2h + 5 (Vh)? +¢

» V?h tries to smoothen the surface (opposing the
noise), while (Vh)? drives the system out of
equilibrium.

» This is the simplest nonlinear, local differential
equation governing the growth of a profile (higher
order terms would be irrelevant).

» Growth occurs mainly at an "active" zone on the
surface of the cluster, in a direction normal to
the interface:

5h = +/(vét)2 + (v6tV h)?

h:vdLHVM22w+gVM2+“
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KPZ (1986): scaling

> Construct the adimensional quantity
h
2 3
D 3
(5 1)

We expect its fluctuations to exhibit a universal
distribution.

h=

» KPZ proved by Dynamical Renormalization Group that
the interface width grows as

[N

w(R, t) ~ RXwo(R, t) ~ tzwp(O(1)) ~ t

)

being z:%, x:% in d =1.
» Does the universality hold beyond the 2" moment?
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Random Matrix Theory
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Reminder: Gaussian random matrices

» Gaussian random matrix: the jpdf of its entries
is given by
P[M] x e P2 M

and that of its eigenvalues by (Wigner ’51)
P, Aw) o e IVEENT T Iy — Al
J<k
» In general, rotationally invariant matrices have

P, ) = CulAN)Po(Te M, Te M2, Tr MV)

= L|A(5\')|ﬁe— T V) |
Zy

» The N real eigenvalues are strongly correlated
variables. They admit the Coulomb gas
interpretation (Dyson ’62)

P(A1, ..., An) = ZiNe‘g{NZ{Vlk' ~Xjaclog =}
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Spectral density

. y o P, ) NT/‘
p(A, N) = </v Z 6(A — Ai)>
i=1 . / N \\
_1 EEV bulk \
o PN = V2N o

There are 2 length scales in this problem:
1. Bulk interparticle distance

w1k 1
/‘ pANYAN = = = b~ N7
0 N

2. Edges
V2 1 :
pAN)AA= = = Lgge ~ N3
/\/Eledge 1) N e

— /edge > /bulk .
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Davide Venturelli

Largest eigenvalue statistics

<)\max> :\/Ea ‘)\max_\/ﬂ'\’ edgeNN—§ .

Tracy&Widom (’94) show that, for large N, typical
fluctuations behave as

Tracy-Widom

1 2
)\max = \/§+ 72N_§XB

NG
fg(x) ~ {

For =2 (GUE),

=Y
N

right
3 large deviation
—2p8x2

e X — o0

3
_zAM3

e

X — —00 .

| Fo(s) = det(I — P,AP)

where Ps projects on [s,+00) and A is the Airy kernel

Ai(a)Ai’ (b) — Ai’(a)Ai(b)
a—b '

Ala, b) = /:C Ai(a + )Ai(b + t) =
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Ulam’s problem (1961)

(i) Take a sequence of n integers and consider any one
of the n! permutations.

(ii) For each of them, construct all possible
increasing subsequences and take the longest; let
L, be its length.

L, is a random variable: it fluctuates from one
permutation to another, and each one occurs with equal
probability %P

Ulam’s problem (LIS): what is the statistics of L,?

Baik, Deift, Johansson (1999):

Ly, = 2\/5 + n%X2

with the same Y, as in GUE (Tracy-Widom).
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Mapping growth problems on RMT

Discrete KPZ Ulam Tracy-Widom
growth models problem RMT
In growth models, In Ulam’s problem,
h(t) = vt + t3xs . Ly=2vVn+nsx,.

Under the exact mapping h(t) «— L,_,» one finds the
distribution P(H,t) of the centered height function

H = h(x, t) — (h(x, t))

to be

1 H
P(Hv t) - 1 f2 < 1)
t>1 ct3 ct3

where f(x) is universal.
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Explicit examples
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dTASEP (d =1)
Particles on a line, xj(t) € Z at times t=0,1,2...
Step initial conditions: xj(t=0)=—j, j=0,1,2...
At each time step, a jump to the right is attempted

independently by all particles with probability g, but
it’s discarded if the receiving site is occupied.

Define the flux

h.(t) = # of particles which crossed the bond (r,r +1) up
to time t.

The stationary current can be computed exactly from
hydrodynamics (p = 1),

i ee &

Jap) = 5 (1= VI—4ap(1 = p)) i

so we expect |ho(t) ~ Jyt
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dTASEP

Defining

>1 .
we expect O%q — finite.

This reminds of CLT, but the limiting distribution is
not Gaussian. T&W found for GUE

Prob (W < 5)

(8N)*% e F2(S) .

N— oo

Theorem (Johansson 2000)

Prob (ho(t)_J"t < s) —— 1 Fo(-s)
—00

Wl

with V’::(2*4q\/1——q) .
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PROOF part 1: dTASEP — waiting times

Define the jumping times

TG, k) = min {£ € N x(6) = x(0) + (k+1) = —j+ (k+ 1)}
= time at which particle j has completed its (k+ 1) jump.

By construction, since xx(0) = —k, at time Ty = T(k,k)
Xo(Tk) > Xl(Tk) > > Xk(Tk) =1>0> Xk+1(Tk) > ..
so exactly (k+ 1) particles crossed the bond (0,1):

ho(Tk):k—‘rl, ho(t< Tk)gk

| Prob(ho(t) < k) = Prob(Tk > t) = 1 — Prob(T (k, k) < t)|

Define the waiting times

Wjx = # of times particle j stays on site xj(0) + k after it
becomes possible to jump to the next,
xj(0)+ (k+1)=k+1—j.
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PROOF part 1: dTASEP — waiting times

lg

. 03 101
2001 3

' 12027

(, 20 2 1 7

3

0

-2 0 2 4 X
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PROOF part 1: dTASEP — waiting times

t
15
¢ 03)1 0 1
2001 3
9
120 27
(, 2.0 21 7
3 €%)
0

-2 0 2 4 X
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PROOF part 1: dTASEP — waiting times

> Now notice (j,k > 0)

T(j, k) =1+ wj + (time at which this jump becomes possible)
— 1w+ max (TG, k— 1), T( = 1, k)

— 1+ +k i
oy mancsion T T 0D Z Wi
(i)ed
7.e. maximize the total waiting time with the
constraint that only right-downward steps are
allowed.
» In order to compute Prob(T(k,k) <t), we only need
the topleft (k+ 1)x(k+ 1) corner of the matrix of
waiting times wj;.
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PROOF part 1: dTASEP — waiting times

-2 0 2 4 X
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PROOF part 1: dTASEP — waiting times

Let’s count the number of (k+ 1)x(k + 1) matrices
wjj € N which satisfy

T(k,k)=2k+1 ]l <t. *
(k, k) + +¢:(O7rg;a_z<(k,k) (%2¢W1 < (%)

To each of these matrices W we give a (normalized)

weight
— k+1 2 - Wi
fw = gy : (1—q)=i™
| —— |
# of decisions to jump # of decisions to stay
so that

Prob(T(k, k) <t)= > g% (1 q)Wh
We (%)
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PROOF part 2: waiting times — random words

To each W = wjj we associate a list of pairs (/)
listed in lexicographical order, with the rule

w;; = how often the pair (/,j) appears in the list.

03 101
2001 3
12 0 2 ? _'0000111222223333
290 2 1 ? 111200301133¢0022

This may be regarded as a random list of 2-letters
words drawn from the alphabet {0,1,...,k}.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 25 / 33
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PROOF part 2: waiting times — random words

But any right-downward path ¢ € W corresponds to a
subsequence in this list which is weakly increasing in
both rows, whence

Prob(T(k k) < t) = 3 q¥* . (1—q)
beD(k,t)

where

D(k,t) = set of finite sequences ¢ of
lexicographically ordered 2-letter words from the
alphabet {0,1,...,k} and for which the length of the
longest subsequence of ¢ (weakly increasing in both
letters) is at most t—2k—1.
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PROOF part 3: random words — RMT

Random Semi - Standard Schur
— — . —
words Young Tableaux polynomials

Prob(T(k k) < ) = 2 >0 AGP ][ -a)"

0<y<t—k—1

to be compared with the expression for GUE

1 M AL B
Prob()\max S /\) = ?N/ R / A()\)ZHG_AJ d)\J .
—00 —oo j=1

In both cases we adopt the technique of orthogonal
polynomials: both Meixner and Hermite polynomials have
their asymptotic behavior (beyond their largest zero)
described in terms of Airy functioms.
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PROOF part 4: asymptotics

Define the weight functions (x € Z): wy(x) = 0(x)(1— q)*.
Take (pj);»o polynomials of degree j with leading
coefficient 7; and let

i (x) = pi(x)y/ we(x) -

By a property of Vandermonde determinants,

2 k
=(0...- %) AG)? —q)i
og;,jgk) (vo---vw)*AE T - a)

i=0

<det wi(vi)

and since MOTYeOoVer (detA) =detATA = det (szj,Ajk) we can rewrite

Prob(T(k, k) <t)= % detS
(Yo%)
U*Z*” ) (1= Xje—k,00) (X))
XEZ
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PROOF part 4: asymptotics

Choose (pj);>, to be Meixner polynomials:

Z‘Pl x)pj(x) = ZP, x)pj(x)wq(x) = dj; .

XEZL XEZL

Letting S =1 — R(t — k), with

(R(s)); = > @i(x)0i()X[s.00) (¥) = D _ 0i(x)(x)

XEZ Xx>s

we can rewrite

Prob (T (k, k) < t) = (%C":k)Z det[l — R(t — k)]
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PROOF part 4: asymptotics

Choose (pj);»o to be Meixner polynomials:

Z@i(X)sﬁj(X) = ZPI(X)PJ(X)WCJ(X) = 0 -

XEL XEZL

Letting S =1 — R(t — k), with

(R(s)); = > 2i(x)i(¥)X[s,00) (X) = D _ @i(x) (%)

XEZL x>s

we can rewrite

1

G det[l — R(t — k)]

Prob(T(k,k) <t)= o
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PROOF part 4: asymptotics
Finally, we may interpret R(s) = A(s)o B(s), with

B(s): GeRF™ s F(x) = upi(x)

[s,20)

A(s): f(x) — Zf(x)apj(x), Jj=0,1,...,k

X>s

and using det(I — AB) = det(I — BA) we find

| Prob (T (k, k) < t) = det[l — T(t — k)] |

k
Tk(s): f(x) (Zak(x,y)f(y)) okl y) =D ei(x)ei(y)

y>s Jj=0

| Prob(ho(t) < k) = 1 — Prob(T(k, k) < t) = 1 — det[I - (t — k)] |
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What about KPZ itself?

am:yv%+%(vm2+g

It remained rather poorly understood until 2010!
Non-rigorous approach: apply to KPZ equation the map

— %h(x,t)
Zht)=e 92 Tz Yy oz
T=2v, V(x,t) = =X({(x, 1) ot 2 T

But this may be regarded as a Bloch equation for the
propagator of a directed polymer in a random potential

#(t)=x s ptqf1(deyz
Z(x, 1/0,0) = / Po(r)e hir{3(E) V)

#(0)=0

Z(x,0[0,0) = 6(x), (V(x,t)V(X,t')) = DA?5(x — x')é(t — t') .
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What about KPZ itself?
We are after the pdf of the height field
v
h(x,t) = ~ log Z F
free energy

This can be found using replicas: the moments

Zn = (Z(x1,t|y1,0) ... Z(xn, t|yn, 0))

satisfy, by Feynman-Kac formula,

n
62
0iZy=-MnZy, HMHo=-3 5 —2DX D &(xi—x)
ax
j=1 1<i<j<n
i.e. the QM problem in imaginary time of n attractive
particles subject to the Lieb-Liniger Hamiltonian.
The exact solution is known by Bethe Ansatz!
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. Take home messages

\

» Exclusion procesées <> growth processes are
examples of nonequilibrium phenomena in Physics

1
» KPZ universality class: h(t)~t , w(t)~ t3
' » Growth models —» LIS — RMT :

fluctuations are described by Tracy-Widom
distribution.

. i 5 0 —
andom:at’r;s/¥| 3 July 2020,12\/ 33
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. Take home messages

\

» Exclusion proceséeS'++ growth processes are
examples of nonequilibrium phenomena in Physics

1
» KPZ universality class: h(t)~t , w(t)~ t3
' » Growth models —» LIS — RMT :

fluctuations are described by Tracy-Widom
distribution.

Thanks for your attention!
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