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Interacting particle systems

I Non equilibrium stationary states (NESS): systems
which are kept out of equilibrium by external
influences. Macroscopic state variables are
time-independent, but there are non-vanishing
microscopic currents.

I Examples: heat conduction (Fourier’s law),
diffusion (Fick’s law), electric conduction (Ohm’s
law).

I An alternative to the Hamiltonian description is
to start from a stochastic microscopic dynamics in
terms of interacting particle systems : they are
lattice models with a discrete set of states
associated to each site, and local interactions.
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Exclusion processes

Setting: identical particles on a lattice Ω ⊂ Zd.
A configuration is specified by n = {nx}x∈Ω ∈ {0, 1}

Ω.

Dynamics:

(i) Each particle carries a clock which rings
according to a Poisson process

(ii) When the clock rings, particle at x attempts to
jump in y with probability qxy (n)

(iii) If y is empty, the jump is performed.

Assume: d = 1, homogeneous, no interactions, nearest
neighbour hoppings. Then

qxy = qδy ,x+1 + (1− q)δy ,x−1

→ SSEP, ASEP, TASEP...
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Mapping to a growth model (Rost ’81)
Let’s map on the height
configuration {nx} ←→

{
hx+ 1

2

}
by fixing h 1

2
= 0 and

hx+ 1
2
− hx− 1

2
=

1
2
− nx = ±1

2
.

This is known as single step model. Notice

hx+ 1
2

(t)− hx+ 1
2

(0) = net # of particles which crossed the
bond (x , x + 1) from left to right up to time t.

Choosing the initial condition
{
nx = 1− θ(x)

xj (t = 0) = −j
←→ h

x+ 1
2

(0) =
1

2
|x|

we get a corner growth model. Rotating by 45◦ gives
the net # of jumps a given particle has performed as
a function of its label j.
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Growth phenomena

I Experimentally we
observe, at late times,

〈h(t)〉 ∼ t

w =
√
〈(h − 〈h〉)2〉 ∼ t

1
3 .

Smells like universal!
I Many simple growth

models (Eden, PNG, DP
in a random medium,
AEP...) indeed predict

h(t) = vt + χt
1
3 .
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Hydrodynamics

How does deterministic evolution emerge from
stochastic microscopic dynamics on large scales?

Particle density : ρ = 〈nx〉
Stationary particle current : net # of particles
jumping x → x + 1 per unit time. We look for J(ρ).

I Example: ASEP on a ring

〈nx (1− nx+1)〉 = 〈nx+1(1− nx )〉 =
N

L
·
L− N

L− 1

so that at fixed ρ = N/L

J = q 〈nx(1− nx+1)〉 − (1− q) 〈nx+1(1− nx)〉 =
(2q − 1)ρ(1− ρ)

1− 1
L

−−−→
L→∞

(2q − 1)ρ(1− ρ) .
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Hydrodynamics

I Start from a slowly varying ρ(x , 0) (say, on a scale
l). Since particle density is locally conserved,

∂tρ(x , t) + ∂x j(x , t) = 0 .

For l →∞, we expect j(x , t)→ J(ρ(x , t)), so that

∂

∂t
ρ+

∂

∂x
J(ρ) = 0

I What about fluctuations? Expanding around
ρ(x , t) = ρ̄+ u(x , t) up to 2nd order we get

∂u

∂t
+ c

∂u

∂x
+ λu

∂u

∂x
= 0

where
c ≡ dJ

dρ

∣∣∣∣
ρ̄

, λ ≡ d2J

dρ2

∣∣∣∣
ρ̄

.
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From Euler to KPZ
I Stepping to a comoving frame we get the inviscid

Burgers equation

ut + λuux = 0 .

I Let’s introduce fluctuation/dissipation: we get
the stochastic Burgers equation

ut + λuux = νuxx − ζx
〈ζ〉 = 0 ,

〈
ζ(x, t)ζ(x′, t′)

〉
= Dδ(x − x′)δ(t − t′)

which has a conservation form, with a current

∂x j(x , t) = λuux − νuxx + ζx .

I Let u(x , 0) = 0 and define the height function

h(x , t) =

∫ t

0
j(x , s) ds

so that ∂xh = −u. This gives the KPZ equation

∂th = ν∇2h +
λ

2
(∇h)2 + ζ
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KPZ (1986): an effective model for growth

∂th = ν∇2h +
λ

2
(∇h)2 + ζ

I ∇2h tries to smoothen the surface (opposing the
noise), while (∇h)2 drives the system out of
equilibrium.

I This is the simplest nonlinear, local differential
equation governing the growth of a profile (higher
order terms would be irrelevant).

I Growth occurs mainly at an "active" zone on the
surface of the cluster, in a direction normal to
the interface:

δh =
√

(vδt)2 + (vδt∇h)2

ḣ = v
√

1 + (∇h)2 ' v +
v

2
(∇h)2 + . . .
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KPZ (1986): scaling

I Construct the adimensional quantity

h̄ =
h(

D2

ν2 |λ|t
) 1

3
.

We expect its fluctuations to exhibit a universal
distribution.

I KPZ proved by Dynamical Renormalization Group that
the interface width grows as

w(R, t) ∼ Rχw0(R, t) ∼ t
χ
z w0(O(1)) ∼ t

1
3 ,

being z = 3
2, χ = 1

2 in d = 1.
I Does the universality hold beyond the 2nd moment?
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Reminder: Gaussian random matrices
I Gaussian random matrix: the jpdf of its entries

is given by
P[M] ∝ e−β

N
2 Tr M2

and that of its eigenvalues by (Wigner ’51)

P(λ1, . . . , λN) ∝ e−
β
2 N
∑N

i=1 λ
2
i

∏
j<k

|λj − λk |β .

I In general, rotationally invariant matrices have

P(λ1, . . . , λN) = CN |∆(~λ)|βϕ(TrM,TrM2, . . . ,TrMN)

≡ 1
ZN
|∆(~λ)|βe−

∑N
i=1 V (λi ) .

I The N real eigenvalues are strongly correlated
variables. They admit the Coulomb gas
interpretation (Dyson ’62)

P(λ1, . . . , λN) =
1
ZN

e−
β
2 {N

∑N
i=1 λ

2
i −
∑

j 6=k log |λj−λk |} .
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Spectral density

ρ(λ,N) =

〈
1
N

N∑
i=1

δ(λ− λi )

〉

−−−−→
N→∞

ρ(λ) =
1
π

√
2− λ2 .

There are 2 length scales in this problem:
1. Bulk interparticle distance∫ lbulk

0
ρ(λ,N) dλ ∼=

1
N

→ lbulk ∼ N−1 .

2. Edges ∫ √2

√
2−ledge

ρ(λ,N) dλ ∼=
1
N

→ ledge ∼ N−
2
3 .

−→ ledge � lbulk .
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Largest eigenvalue statistics

〈λmax〉 =
√

2 , |λmax −
√

2| ∼ ledge ∼ N−
2
3 .

Tracy&Widom (’94) show that, for large N, typical
fluctuations behave as

λmax =
√

2 +
1√
2
N−

2
3χβ

fβ (x) ∼

e
− 2

3 βx
3
2
, x →∞

e
− β

24 |x|
3
, x → −∞ .

For β = 2 (GUE),

F2(s) = det(I− PsAPs)

where Ps projects on [s,+∞) and A is the Airy kernel

A(a, b) =

∫ ∞
0

Ai(a + t)Ai(b + t) =
Ai(a)Ai′(b)− Ai′(a)Ai(b)

a − b
.
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Ulam’s problem (1961)

(i) Take a sequence of n integers and consider any one
of the n! permutations.

(ii) For each of them, construct all possible
increasing subsequences and take the longest; let
Ln be its length.

Ln is a random variable: it fluctuates from one
permutation to another, and each one occurs with equal
probability 1

n!.

Ulam’s problem (LIS): what is the statistics of Ln?

Baik, Deift, Johansson (1999):

Ln = 2
√
n + n

1
6χ2

with the same χ2 as in GUE (Tracy-Widom).
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Mapping growth problems on RMT

In growth models,

h(t) = vt + t
1
3χ2 .

In Ulam’s problem,

Ln = 2
√
n + n

1
6χ2 .

Under the exact mapping h(t)←→ Ln=t2 one finds the
distribution P(H, t) of the centered height function

H = h(x , t)− 〈h(x , t)〉

to be

P(H, t) −−→
t�1

1

ct
1
3
f2

(
H

ct
1
3

)
where f2(x) is universal.

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 16 / 33



Outline

Interacting particle systems
Exclusion processes
Growth phenomena
Hydrodynamic limit
KPZ equation

Random Matrix Theory
Gaussian ensembles
Largest eigenvalue statistics
Ulam’s problem
Mapping growth problems on RMT

Explicit examples
dTASEP with step initial conditions
KPZ: map on directed polymer

Davide Venturelli (SISSA, Trieste) Growth processes and Random Matrices 3 July 2020 17 / 33



dTASEP (d = 1)
Particles on a line, xj(t) ∈ Z at times t = 0, 1, 2 . . .
Step initial conditions: xj(t = 0) = −j, j = 0, 1, 2 . . .
At each time step, a jump to the right is attempted
independently by all particles with probability q, but
it’s discarded if the receiving site is occupied.

Define the flux

hr (t) = # of particles which crossed the bond (r , r + 1) up
to time t.

The stationary current can be computed exactly from
hydrodynamics (ρ = 1

2),

Jq(ρ) =
1
2

(
1−

√
1− 4qρ(1− ρ)

)
so we expect h0(t) ∼ Jqt
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dTASEP

Defining

Zq(t) ≡ h0(t)− Jqt

t
1
3

we expect σ2
Zq

t�1−−→ finite.
This reminds of CLT, but the limiting distribution is
not Gaussian. T&W found for GUE

Prob

(
λmax(M)−

√
2N

(8N)−
1
6

≤ s

)
−−−−→
N→∞

F2(s) .

Theorem (Johansson 2000)

Prob

(
h0(t)− Jqt

Vt
1
3

≤ s

)
−−−→
t→∞

1− F2(−s)

with V =
(
2−4q

√
1− q

) 1
3 .
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PROOF part 1: dTASEP → waiting times
Define the jumping times

T (j , k) ≡ min {t ∈ N : xj(t) = xj(0) + (k + 1) = −j + (k + 1)}
= time at which particle j has completed its (k + 1)th jump.

By construction, since xk(0) = −k, at time Tk = T (k, k)

x0(Tk) > x1(Tk) > · · · > xk(Tk) = 1 > 0 > xk+1(Tk) > . . .

so exactly (k + 1) particles crossed the bond (0,1):

h0(Tk) = k + 1 , h0(t < Tk) ≤ k

Prob(h0(t) ≤ k) = Prob(Tk > t) = 1− Prob(T (k, k) ≤ t)

Define the waiting times

wjk = # of times particle j stays on site xj(0) + k after it
becomes possible to jump to the next,

xj(0) + (k + 1) = k + 1− j.
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PROOF part 1: dTASEP → waiting times
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PROOF part 1: dTASEP → waiting times

I Now notice (j , k > 0)

T (j , k) = 1 + wjk + (time at which this jump becomes possible)

= 1 + wjk + max {T (j , k − 1),T (j − 1, k)}

−−−−−−−−→
by induction

1 + j + k + max
φ:(0,0)→(j,k)

 ∑
(i,j)∈φ

wij


i.e. maximize the total waiting time with the
constraint that only right-downward steps are
allowed.

I In order to compute Prob (T (k , k) ≤ t), we only need
the topleft (k + 1)x(k + 1) corner of the matrix of
waiting times wij.
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PROOF part 1: dTASEP → waiting times

Let’s count the number of (k + 1)x(k + 1) matrices
wij ∈ N which satisfy

T (k , k) = 2k + 1 + max
φ:(0,0)→(k,k)

 ∑
(i,j)∈φ

wij

 ≤ t . (*)

To each of these matrices W we give a (normalized)
weight

fW ≡ q(k+1)2

# of decisions to jump

· (1− q)
∑

ij wij

# of decisions to stay

so that

Prob (T (k , k) ≤ t) =
∑

W∈(*)
q(k+1)2 · (1− q)|W |1
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PROOF part 2: waiting times → random words

To each W = wij we associate a list of pairs (i , j)
listed in lexicographical order, with the rule

wij ≡ how often the pair (i , j) appears in the list.

This may be regarded as a random list of 2-letters
words drawn from the alphabet {0, 1, . . . , k}.
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PROOF part 2: waiting times → random words

But any right-downward path φ ∈W corresponds to a
subsequence in this list which is weakly increasing in
both rows, whence

Prob (T (k , k) ≤ t) =
∑

φ∈D(k,t)

q(k+1)2 · (1− q)|φ|

where

D(k, t) = set of finite sequences φ of
lexicographically ordered 2-letter words from the

alphabet {0, 1, . . . , k} and for which the length of the
longest subsequence of φ (weakly increasing in both

letters) is at most t − 2k − 1.
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PROOF part 3: random words → RMT

Prob (T (k , k) ≤ t) =
Cq,k

(k + 1)!

∑
~y∈Zk+1

0≤yi≤t−k−1

∆(~y)2
k∏

i=0

(1− q)yi

to be compared with the expression for GUE

Prob (λmax ≤ Λ) =
1
ZN

∫ Λ

−∞
· · ·
∫ Λ

−∞
∆(~λ)2

N∏
j=1

e−λ
2
j dλj .

In both cases we adopt the technique of orthogonal
polynomials: both Meixner and Hermite polynomials have
their asymptotic behavior (beyond their largest zero)
described in terms of Airy functions.
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PROOF part 4: asymptotics
Define the weight functions (x ∈ Z): wq(x) = θ(x)(1− q)x.
Take (pj)j≥0 polynomials of degree j with leading
coefficient γj and let

ϕj(x) ≡ pj(x)
√

wq(x) .

By a property of Vandermonde determinants,
(

detϕj (yi )

∣∣∣∣
0≤i,j≤k

)2
= (γ0 . . . γk )2 ∆(~y)2

k∏
i=0

(1− q)yi

and since moreover (det A)2 = det ATA = det
(∑

j AjiAjk

)
we can rewrite

Prob (T (k , k) ≤ t) =
Cq,k

(γ0 . . . γk)2 detS

(S)ij =
∑
x∈Z

ϕi (x)ϕj(x)
(
1− χ[t−k,∞)(x)

)
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PROOF part 4: asymptotics

Choose (pj)j≥0 to be Meixner polynomials:∑
x∈Z

ϕi (x)ϕj(x) =
∑
x∈Z

pi (x)pj(x)wq(x) = δij .

Letting S = I− R(t − k), with

(R(s))ij =
∑
x∈Z

ϕi (x)ϕj(x)χ[s,∞)(x) =
∑
x≥s

ϕi (x)ϕj(x)

we can rewrite

Prob (T (k , k) ≤ t) =
Cq,k

(γ0 . . . γk)2 det[I− R(t − k)]
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PROOF part 4: asymptotics
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PROOF part 4: asymptotics
Finally, we may interpret R(s) = A(s) ◦ B(s), with

B(s) : ~u ∈ Rk+1 7→ f (x) =
∑
j

uj ϕj(x)

∣∣∣∣
[s,∞)

A(s) : f (x) 7→
∑
x≥s

f (x)ϕj(x) , j = 0, 1, . . . , k

and using det(I− AB) = det(I− BA) we find

Prob (T (k , k) ≤ t) = det[I− Γk(t − k)]

Γk(s) : f (x) 7→

∑
y≥s

σk(x , y)f (y)


x≥s

, σk(x , y) =
k∑

j=0

ϕj(x)ϕj(y)

Prob(h0(t) ≤ k) = 1− Prob(T (k , k) ≤ t) = 1− det[I− Γk(t − k)]

Q.E.D.
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What about KPZ itself?

∂th = ν∇2h +
λ

2
(∇h)2 + ζ

It remained rather poorly understood until 2010!
Non-rigorous approach: apply to KPZ equation the map{
Z (x , t) = e

λ
2ν h(x,t)

T = 2ν , V (x , t) = −λζ(x , t)
−→ ∂Z

∂t
=

T

2
∇2Z − 1

T
V (x , t)Z

But this may be regarded as a Bloch equation for the
propagator of a directed polymer in a random potential

Z (x , t|0, 0) =

∫ φ(t)=x

φ(0)=0
Dφ(τ)e

− 1
T

∫ t
0dτ

{
1
2 ( dφ

dτ )2
+V (x(τ),τ)

}

Z (x , 0|0, 0) = δ(x) , 〈V (x , t)V (x ′, t ′)〉 = Dλ2δ(x − x ′)δ(t − t ′) .
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What about KPZ itself?
We are after the pdf of the height field

h(x , t) ≡ 2ν
λ

logZ ∝ F︸︷︷︸
free energy

.

This can be found using replicas: the moments

Zn ≡ 〈Z (x1, t|y1, 0) . . .Z (xn, t|yn, 0)〉

satisfy, by Feynman-Kac formula,

∂tZn = −HnZn , Hn = −
n∑

j=1

∂2

∂x2
j

− 2Dλ2
∑

1≤i<j≤n
δ(xi − xj)

i.e. the QM problem in imaginary time of n attractive
particles subject to the Lieb-Liniger Hamiltonian.
The exact solution is known by Bethe Ansatz!
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Take home messages

I Exclusion processes ↔ growth processes are
examples of nonequilibrium phenomena in Physics

I KPZ universality class: h(t) ∼ t , w(t) ∼ t
1
3

I Growth models −→ LIS −→ RMT :
fluctuations are described by Tracy-Widom
distribution.

Thanks for your attention!
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