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Semiclassical approximation

Consider a scalar field theory

L =
1
2
∂µφ∂

µφ− 1
2
m2φ2 − λφ4

−−−−−→
φ′=
√
λφ

1
λ

{
1
2
∂µφ

′∂µφ′ − 1
2
m2φ′2 − φ′4

}
.

For classical Physics, λ is an irrelevant parameter:
it does not enter the EOM. λ only becomes important in
quantum Physics, where the scale ~ appears:

L
~

=
1
λ~

{
1
2
∂µφ

′∂µφ′ + . . .

}
.

Small ~ (semiclassical) approximations are tantamount
to small λ (weak coupling) approximations.

Davide Venturelli (SISSA, Trieste) Resummation techniques in scalar Field Theory 05.08.2020 2 / 29



Why do we need instantons?

Some physical phenomena are not captured by
perturbative series in λ (or ~). For example:
I The tunneling amplitude through a potential

barrier reads

|T (E )| = e
− 1

~
∫ x2
x1

dx
√

2(V (x)−E)
(1 +O(~)) ∼ e−

A
~

and this is relevant for false vacua.
I The ground state degeneracy in a double well is

also nonperturbative in the quartic coupling λ:

E1(λ)− E0(λ) ∼ e−
A
λ .
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Quantum Mechanics as a 1d QFT

Given a quantum mechanical Hamiltonian

H =
1
2
p2 + W (q)

we can construct the propagator

〈qf |e−
HT
~ |qi 〉 = N

∫
Dq(t)e−

S(q)
~

where the path integral is performed over trajectories
obeying q(−T

2 ) = qi, q(T2 ) = qf , and the action

S(q) =

∫ T
2

− T
2

dt
{

1
2
q̇(t)2 + W (q)

}
resembles a Lagrangian for the inverted potential

V (q) ≡ −W (q) .
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Path integral around an instanton

Nontrivial saddle points are finite action solutions
of the Euclidean EOM in the inverted potential

q̈c(t) + V ′(qc) = 0 .

Expanding q(t) = qc(t) + η(t), Dη =
∏

n≥0 dcn,

〈qf |e−
HT
~ |qi 〉 ' N e−

S(qc )
~

∫
Dη(t)e

− 1
~
∫
η δ

2S
δq2

∣∣∣
qc
η

= N e−
S(qc )
~
[
det
(
−∂2

t + W ′′(qc)
)]− 1

2 (1 +O(~)) .

Example: EGS = − limβ→∞
1
β

log
[

Tr e−βH
]
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Asymptotic expansions

The power series

ϕ(λ)→
∞∑
n=0

anλ
n

is said to be asymptotic to f (λ) as λ→ 0 iff

f (λ) =
N∑

n=0

anλ
n

︸ ︷︷ ︸
ϕN (λ)

+O
(
λN+1) .

As we vary N, in contrast to convergent series, the
partial sum ϕN(λ) will first approach f (λ) and then
diverge. Assuming

an ∼ A−nn!

one can minimize the error ∆N = |aNλN | and find the
optimal truncation N∗ = |Aλ |. The next term differs by

∼ e−|
A
λ
|, which is the maximal resolution.
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Borel transform

Problem: all the information in the terms n > N∗ we
discarded is lost!
Solution: define the Borel transform

B(t)→
∞∑
n=0

an
n!

tn .

I If an ∼ A−nn!, its radius of convergence is ρ = |A|.
I Suppose its analytic continuation B(t) has no

singularities on the real semiaxis t > 0. Then

ϕB(λ) =

∫ ∞
0

dt e−tB(λt) =
1
λ

∫ ∞
0

dt e−
t
λB(t)

ϕ
(N)
B (λ) =

1
λ

N∑
n=0

an
n!

∫ ∞
0

e−
t
λ tn dt =

N∑
n=0

anλ
n

and ϕ(λ) is said to be Borel summable to ϕB(λ).
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Borel transform

I In general, ϕ(λ) 6= ϕB(λ) as they may differ by
singular (nonperturbative) terms.

I In some lucky cases, we are able to express

ϕ(λ) =

∫ ∞
0

dt e−t (. . . )︸ ︷︷ ︸
B(λt)

.

Then we already know that ϕB(λ) = ϕ(λ), i.e. ϕ(λ)
is Borel summable to the exact result.

I In practice, we don’t have all the an terms, and
if we naively Laplace transform the truncated
series for B(λt) term-by-term, we get back the
original asymptotic expansion!

I We will need to do something first.
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Large order behavior

The analytic structure of the Borel transform is
connected to the large order behavior of ϕ(λ).
(i) The behavior of the Borel transform B(t) near a

singularity t = A determines the nonperturbative
term of order e−

A
λ .

(ii) The large n behavior of the coefficients an in
ϕ(λ) is controlled by the leading nonperturbative
contribution.

Example: B(t) has a branch cut starting at t = A > 0,

B(A + t) = (−t)−b
∑
n≥0

cnt
n + (regular) .

Then, calling ĉk = 2 sin(πb)Γ(k + 1− b)ck,

an ∼
1
2π

∑
k≥0

Ak−b−nĉkΓ(n+b−k) , disc(ϕ)(λ) = ie−
A
λλ−b

∞∑
n=0

ĉnλ
n .
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Borel summability in d<4 scalar FT

I =

∫
DφG [φ]e−

1
~S[φ] , S [φ] =

∫
ddx

{
1
2

(∂φ)2 + V (φ)

}

I Focus on super-renormalizable theories, d = 2, 3
(counterterms can be reabsorbed into G [φ]).

I Let φ̃ ≡ 0 be the unique, absolute minimum of V (φ)

s.t. S [φ̃ = 0] = 0. Construct

I =

∫ ∞
0

dt e−t
∫
DφG [φ]δ

(
t − S [φ]

~

)
︸ ︷︷ ︸

B(~t)

I Is this legit? Yes if the change of variables
t = S[φ]

~ is nonsingular (S ′[φ] 6= 0), i.e. if there
are no finite action critical points for real
field configurations other than φ̃ = 0.
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Generalized Derrick Theorem [Brézin et al.]

S [φ] has no nontrivial real saddles with finite action.

S [φ] =

∫
ddx

1
2
∂µφaMab∂µφb︸ ︷︷ ︸

A

+

∫
ddx

1
λ
V (
√
λφ)︸ ︷︷ ︸

B

Proof: assume φ̃ is a real, classical solution. Then

S(α) ≡ S [φ̃(αx)] = α2−dA + α−dB .

Since S [φ] is stationary under variations at α = 1,

dS

dα

∣∣∣∣
α=1

= − [(d − 2) · A + d · B] ≡ 0 → B =
2− d

d
A

d2S

dα2

∣∣∣∣∣
α=1

= 2d · B ≥ 0 (stability condition)

I Since A ≥ 0, there are no real solutions for d > 2.

I d = 2→ B = 0→ V (φ̃) ≡ 0→ V (φ) has a set of degenerate
vacua continuously connected.
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φ4 theory

If the minimum is not the global
one, we generally have more real
finite action critical points.
The domain of integration is
said to be on a Stokes line and
the perturbative series will not
be Borel summable.

I This is what happens in the presence of SSB. In
order to restore summability, we have to introduce
a small SB term as

SV ,ε[φ] = SV [φ] + ε

∫
V

ddx φ(x) → ISSB = lim
ε→0

lim
V→∞

I(V , ε) .

I This the case in d = 2 for

V (φ) =
1
2
m2φ2 + λφ4 , m2 > 0 .

For λ ≥ λc we get SSB because of a 2nd order P.T.
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Normal ordering

I In any scalar theory in 2d with nonderivative
interactions, divergencies which occur at any
order in perturbation theory can be removed by
simply normal ordering the Hamiltonian.

I To do so, one has to specify the particle mass of
the free Hamiltonian through which creation and
annihilation operators are defined.

I Coleman (1975) proved the relations

Nm

(
e iβφ

)
=

(
µ2

m2

) β2
8π

Nµ
(
e iβφ

)
Nm(H0) = Nµ(H0) + E0(µ)− E0(m)

= Nµ(H0) +
1
8π

(µ−m)

where
H0 =

1

2
φ̇

2 +
1

2

(dφ

dx

)2
, E0(m) =

∫ dk

8π

2k2 + m2√
k2 + m2

.
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Chang duality (1976)

The 2d theory described by the Euclidean Lagrangian

L =
1
2

(∂φ)2 +
1
2
m2φ2 + λNm(φ4)

with m2, λ > 0 admits a dual representation as

L̃ =
1
2

(∂φ)2 − 1
4
µ2φ2 + λNµ(φ4) .

Proof: using Coleman’s relations, one can check that
L maps on L̃ provided

1
2
m2 +

3λ
2π

log
m2

µ2 = −1
4
µ2 .

The dual mass µ is found by solving (g ≡ λ
m2 , g̃ ≡ λ

µ2 )

f1(g) = f2(g̃) ,

{
f1(g) = log(g)− π

3g

f2(g̃) = log(g̃) + π
6g̃ .
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Chang duality: dual mass

For g ≥ gB ' 2.26, there are
two solution branches with
different asymptotic
behavior as g →∞:{

g̃w (g) ∼ π
6 log(g)

g̃s(g) ∼ g

I For small g, the theory is in the symmetric phase
with 〈φ〉 = 0.

I For large g, we use the dual description and get a
weakly coupled double well: the symmetry is
spontaneously broken and 〈φ〉 = ± µ√

8λ
.

I By continuity, there must be a phase transition
point in between!

I Simon-Griffiths showed that it can’t be 1st order.
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Chang duality: summary

Aim: use this to compute perturbative expansions in
the symmetry broken phase!
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Borel summability in the broken phase

I Observables: n-point functions. They admit a
divergent series expansion

I(g̃)→
∞∑
n=0

Ing̃
n

I Borel summability means they can be recovered as

I(g̃) ≡ IB(g̃) =
1
g̃

∫ ∞
0

dt e−
t
g̃ B(t) , B(t)→

∞∑
n=0

In
n!
tn

I This is possible if B(t) is regular over the
positive t real axis, but in general singularities
are present in the complex t plane.

I Their position corresponds to the value of the
action on (complex) instantons.
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Large order behavior

Z (g) =

∫
Dφe−S(φ) ≡

∞∑
k=0

Zkg
k

By Cauchy integral formula,

Zk =
1

2πi

∫
C

dg
Z (g)

gk+1 =
1

2πi

∫
C

dg
g

∫
Dφe−

f (φ,g)︷ ︸︸ ︷
{k log g + S(φ)} .

Solving the saddle point conditions(
δ

δφ(x)
δ
δg

)
f (φ, g) ≡ 0

one finds the leading contribution for large k

Zk ∼ k!
1

(−Sc)k
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Conformal mapping method

I The saddle with the minimum value for the action,
say t1 = S [φ

(1)
c ], determines the radius of

convergence for B(t).
I B(t) can be approximated by a truncated series

expansion (at any order) within 0 < t < |t1|.

I I(g̃) can only be reconstructed up to O(e−
|t1|
g̃ ),

which was the accuracy of the original expansion!
I Let’s instead enlarge the radius of convergence of

B(t) beyond |t1| by a conformal mapping

t(u) : t ∈ [0,∞) 7→ u ∈ [0, 1)

with all the singularities on |u| = 1:

I(g̃) ≡ 1
g̃

∫ 1

0
du |t ′(u)|e−

t(u)
g̃ B(t(u)) .
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Construction of the instanton solution

S [φ] =

∫
ddx

{
1
2

(∂φ)2 + V (φ)

}
→

(
∇2 + ∂2

τ

)
φ = V ′(φ)

We look for an instanton solution s.t.

lim
τ→±∞

φ(x, τ) = φ+

lim
|x|→∞

φ(x, τ) = φ+

Focusing on O(d) invariant solutions, the EOM becomes

d2φ

dr2 +
d − 1
r

dφ
dr

= V ′(φ) .

If the particle starts "still" in a well chosen
φ0 > φ− at "time" r = 0, i.e. dφ

dr

∣∣∣
r=0

= 0, then it will
come to rest in φ = φ+.
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Instanton solution for λφ4

To study the broken phase of λφ4 where 〈φ〉 = ±v, we
solve the radial ODE numerically subjet to the b.c.

∇φ(r = 0) = 0 , φ(r →∞) = v .

Computing the action for
different initial points
φ(r = 0) in the complex
plane gives the position of
the leading singularities
of the Borel transform:

t±i =
1
g̃
{S [φbounce]− S [φ ≡ v ]}

|t1| ' 1.6 , |t2| ' 8.9 . . .
[Serone et al.]
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Weak coupling: conformal mapping

We define a Schwarz-Christoffel
transformation

t(u) = 4|t1|u
[

α1

(1− u)2

]α1
[

1− α1

(1 + u)2

]1−α1

which maps away the leading
saddles t±1 = |t±1 |e±iπα1.

We thus enlarged the radius of
convergence to |u(t±2 )| < 1, where
t±2 are the next saddles.

This produces, at small
couplings, an irreducible error

O(e−
|t2|
g̃ )� O(e−

|t1|
g̃ )

[Serone et al.]
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Weak coupling: conformal mapping

I If the singularities
were radially aligned,
they would get mapped
on the unit disc and
B(t(u)) would converge
everywhere.

I This is what happens in
the Z2 unbroken phase
of the theory, where
singularities lie on
the negative real t
axis.
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Strong coupling: Exact Perturbation Theory

Expanding L̃ around a classical minimum φcl = µ√
8λ
,

L̃ =
1
2

(∂φ)2 +
1
2
µ2φ2 + λ3φ

3 + λφ4 , λ3 =
√

2λµ .

Define instead a modified Lagrangian

L̂ =
1
2

(∂φ)2 +
1
2
µ2φ2 + λ̂3φ

3 + λφ4 , λ̂3 = µλ

√
2
λ0

−−−−−→
φ′=
√
λφ

1
λ

{
1
2

(∂φ′)2 +
1
2
µ2φ′2 + φ′4 + (const) ·

√
λφ′3

}
.

At fixed λ0, the cubic term
turns "quantum" and the
classical finite action
configurations are those of
the Z2 unbroken phase.
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Diagrammatic expansions
(beyond my pay grade)

I Vacuum energy

Λ̃

µ2
= −

(
ψ(1)(1/3)

4π2
−

1

6

)
g̃−0.042182971(51)g̃2−0.0138715(74)g̃3−0.01158(19)g̃4+O

(
g̃5
)

Λ̃

µ2

∣∣∣∣∣
EPT

= −
[

1

g̃0

(
ψ(1)(1/3)

4π2
−

1

6

)
+

21ζ(3)

16π3

]
g̃2 +

( 0.15991874

g̃0
+

27ζ(3)

8π4

)
g̃3 +. . . (·)g̃8

I 1-point Tadpole

〈φ〉
φcl

= 1− 0.712462426(83)g̃2 − 2.152451(65)g̃3 − 6.5422(59)g̃4 +O
(
g̃5
)

but, since in 2d Ising 〈φ〉 ∼ µ
1
8 , we’ll plot

T ≡
( 〈φ〉
φcl

)8
∼ |g̃c − g̃| .

I Physical mass

M̃2

µ2
= 1− 2

√
3g̃ − 4.1529(18)g̃2 − 14.886(30)g̃3 − 50.62(99)g̃4 +O

(
g̃5
)
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Results
[Serone et al.]
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Take home messages

I Observables in QFT are often computed in terms of
asymptotic series, so that the strongly coupled
region is inaccessible.

I The Borel transform technique is a way to
circumvent this problem in a large class of scalar
field theories.

I Its effectiveness depends on the singularity
structure of the Borel function, which in turn is
determined by the instanton configurations of the
theory.

I This can be used in φ4 theory in d = 2 to study
its symmetry broken phase.

Thanks for your attention!
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Exact Perturbation Theory
in Quantum Mechanics

I(λ) =

∫
Dx(τ)G [x(τ)]e−

1
λS[x(τ)] , S [x ] =

∫
dτ
{

1
2
ẋ2 + V (x)

}

I Derrick’s theorem doesn’t cover the d = 1 case.
I Still, if the action S [x(τ)] has only one real

saddle s.t. det(S ′′[xc(τ)]) 6= 0, then the series
expansion of I(λ) is Borel summable to the exact
result.

I This requirement is met whenever V (x) has a
single, nondegenerate critical point (minimum).
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Exact Perturbation Theory

Let’s split the potential as V = V0 + ∆V so that

(1) V0 has a single, nondegenerate minimum.

(2) lim|x |→∞
∆V
V0

= 0.
Introducing the modified potential

V̂ ≡ V0 +
λ

λ0
∆V ≡ V0 + λV1

Î(λ, λ0) =

∫
DxG [x ]e−

1
λ0

∫
dτ∆V− 1

λS0 , S0 ≡
∫

dτ
{

1
2
ẋ2 + V0

}
we obtain that I(λ) = Î(λ, λ) becomes Borel summable to
the exact result.

Davide Venturelli (SISSA, Trieste) Resummation techniques in scalar Field Theory 05.08.2020 29 / 29



Exact Perturbation Theory

Davide Venturelli (SISSA, Trieste) Resummation techniques in scalar Field Theory 05.08.2020 29 / 29



Mass in the unbroken phase
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Kink mass from the unbroken phase?
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