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In this 4-hours lecture, I aim to provide a bird’s-eye view on chaos in quantum many-body systems and
Anderson localization, using random matrices as a tool to understand their physics.

The intent is pedagogical rather than exhaustive, and I list below a few references where these concepts
are explored in greater depth. In particular, this review [1] offers a contained and colloquial introduction to
quantum chaos and the Eigenstate Thermalization Hypothesis, whereas this second review [2] provides a more
comprehensive discussion of these topics (at the cost of being more lengthy). These slides [7] summarize the
same main ideas, following a storyline similar to the one adopted in the first part of my lecture. A great
introduction to random matrices can be found in this book [4]; see also these lecture notes [6], which are based
on a course given by Pierpaolo Vivo, one of the authors of [4]. Unfortunately, there are not many pedagogical
introductions around to the topic of Anderson and many-body localization; in the second part of my lecture, I
initially follow [5], and then the storyline summarized in these slides [8].

Throughout the lecture I propose several guided exercises, the solutions to which (mostly presented in class)
can also be found in the references given below.

Syllabus

• Reminder on the concept of thermalization in classical many-body systems (ergodicity, typicality).

• Reminder on classical integrable and chaotic systems (Liouville-Arnold theorem, Lyapunov exponents).

• Problems with the naive application of these concepts to quantum mechanics.

• How does a quantum system reflect the regular/chaotic behavior of its classical counterpart? Energy
spectrum and level spacing statistics.

• Exercise [4, 6]. Consider a set of i.i.d. random energy levels En. Derive the distribution P (s) of the
spacing s = En+1 − En between adjacent levels.

• Berry-Tabor conjecture (spectrum of quantum systems whose classical counterpart is integrable).

• More complex Hamiltonians: why introducing random matrices. Generalities on the Gaussian ensembles.

• Exercise [6]. Take a symmetric 2× 2 matrix H whose entries are Gaussian random variables. Write the
joint pdf P(H) of its entries, and deduce the compatibility between the two requirements of independent
Gaussian entries, and rotational invariance of the statistical weight of the ensemble.

• Joint distribution of the eigenvalues in the Gaussian Orthogonal Ensemble (GOE), eigenvalue repulsion.

• Exercise [4]. Use such joint pdf to derive P (s) for the GOE in the 2 × 2 case. Show that it follows the
so-called Wigner’s surmise.

• Bohigas-Giannoni-Schmit conjecture (spectrum of quantum systems whose classical counterpart is chaotic).

• Exercise [3, 4]. Given the distribution Pψ(ψ) of a generic eigenvector in the GOE, marginalize it to
compute the PDF P1(x = ψ1) of a single component. Take the thermodynamic limit and compute its first
four moments, then obtain Py(y = N |ψ1|2) (known as the Porter-Thomas distribution).

• Structure of the matrix elements of an observable averaged over GOE eigenvectors.
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• Exercise [2]. Prove that the fluctuations of such observables scale in the GOE as ∼ 1/N , where N is the
system size.

• Reminder on the density matrix in quantum mechanics. Time evolution (projection on the diagonal
ensemble), apparent clash with ergodicity.

• Statement of the eigenstate thermalization hypothesis (ETH), and its prediction for the expectation value
of (a certain class of) observables.

• Exercise [2]. Use the ETH ansatz to show that fluctuations in the observables are suppressed exponen-
tially with the system size.

• Cases in which the ETH is known to fail: integrable systems, phase transitions, quantum scars, and
localized systems. (Brief explanation of what a quantum scar is.)

• Anderson localization, statement of the problem and state of the art.

• Exercise [5]. Consider the infinite-disorder limit. Compute the return probability of a quantum particle
initially localized at the origin, and the local density of states.

• Exercise [5]. Consider the disorder-free limit. Compute the return probability and the local density of
states (begin by considering a finite system with periodic boundary conditions, then take the thermody-
namic limit).

• Many-body localization in a nutshell. Analogies with the problem of Anderson localization on a sparse
random graph and in the presence of correlated random energies and hopping terms.

• Diagnostics of localization: inverse participation ratio (IPR), multifractal exponents, spectral statistics.

• Exercise [3]. Use the Porter-Thomas distribution to compute the IPR in the GOE.
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