Interacting particles in d > 1 and on comb-like structures

Davide Venturelli

Fluctuations in small complex systems VII

Venezia, 25 September 2024 Work in collaboration with T. Berlioz, A. Grabsch, O. Bénichou

Symmetric Exclusion Process as paradigmatic diffusive system

- Particles on a lattice + random hoppings (equal rates), only if target site is empty
- State of the system: occupations $\eta_r(t) = \{0,1\}$
- In 1d, single-file geometry \rightarrow initial order preserved
- Subdiffusive behavior of tracer

$$\langle X_t^2 \rangle \propto \sqrt{t}$$

(zeolites, confined colloids, dipolar spheres...)

Lin, Meron, Cui, Rice, Diamant, Phys. Rev. Lett. 94 (21), 216001 (2005) Wei, Bechinger, Leiderer, Science 287 (5453), 625-7 (2000) Hahn, Kärger, Kukla, Phys. Rev. Lett. 76 (15), 2762-2765 (1996) H. Spohn, Large scale dynamics of interacting particles (1991)

Role of correlations with surrounding bath

- \rightarrow correlations dictate the subdiffusive behavior of Q_t
- $\langle \eta_r(t) e^{\lambda Q_t} \rangle$ encodes the response of the bath
- Fully understood in 1*d* SEP
- Solution Open problem in d > 1

Grabsch, Poncet, Rizkallah, Illien, Bénichou, Sci. Adv. 8, eabm5043 (2022)

$Q_t = \text{integrated current}$ (net # of parts crossing 0–1), $\langle Q_t^2 \rangle \propto \sqrt{t}$

 \leq A positive fluctuation of Q_t is correlated with an increase of $\eta_r(t)$ on its r.h.s.

As first step, focus on $c_r(t) \equiv \left\langle Q_t \eta_r(t) \right\rangle$

 $\mathbf{Fact 1}$: infinite lattice d = 1 (no reservoirs, no PBC) $c_r(t) \xrightarrow[t \to \infty]{} \bar{\rho}(1 - \bar{\rho}) \mathscr{C}_1\left(\frac{r}{t^{1/2}}\right),$

$$\left\langle Q_t^2 \right\rangle \propto \bar{\rho}(1-\bar{\rho}) t^{1/2}$$

 $\mathbf{Fact 2:}$ finite systems (any spatial dimension d)

$$C_{\vec{r}}(t) \xrightarrow[t \to \infty]{} C_{\vec{r}}, \qquad \langle Q_t^2 \rangle \propto t$$

passing through the comb

Davide Venturelli

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, arXiv:2407.14317

Results

 $ightarrow d = 1 \qquad c_r(t) \xrightarrow[t \to \infty]{} \bar{\rho}(1 - \bar{\rho}) \mathscr{C}_1\left(\frac{r}{t^{1/2}}\right)$ $\langle Q_t^2 \rangle = n_1 \bar{\rho} (1 - \bar{\rho}) t^{1/2}$ $C_{\vec{r}}(t) \xrightarrow[t \to \infty]{} \bar{\rho}(1 - \bar{\rho}) \mathscr{C}_{c}\left(\frac{x}{t^{1/4}}, \frac{y}{t^{1/2}}\right)$ Comb

 $\left\langle Q_t^2 \right\rangle = n_c \,\bar{\rho} (1 - \bar{\rho}) \, t^{3/4}$

argle d = 2

 $C_{\vec{r}}(t) \xrightarrow{t \to \infty} \bar{\rho}(1 - \bar{\rho}) \mathscr{C}_2(\vec{r})$ $\left\langle Q_t^2 \right\rangle = n_2 \,\bar{\rho} (1 - \bar{\rho}) \,t$

Davide Venturelli

Fluctuations in small complex systems VII, Venezia 24 September 2024

Macroscopic Fluctuation Theory towards higher moments and general diffusive processes

- \forall Hydrodynamic description for $\eta_{\vec{r}}(t) \rightarrow$ Path-integral $\int \mathscr{D}\rho \mathscr{D}H e^{-T^{\alpha}S[\rho,H]} + \text{saddle point for total time } T \gg 1 \rightarrow \langle e^{\lambda Q_T} \rangle$
- First application of MFT to an inhomogeneous system (comb)

What about higher d?

- \mathbb{I} In 1d & comb, correlations spread with t and vary slowly at the lattice scale
- In higher d correlations become stationary, no scaling limit!

$$\partial_t \rho(\vec{r}, t) = \overrightarrow{\nabla} \cdot [\mathbf{D} \overrightarrow{\nabla} \rho + \vec{\nu}]$$

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, arXiv:2407.14317

Microscopic path-integral representation

$$\eta_{\vec{r}}(t+dt) - \eta_{\vec{r}}(t) = dt \sum_{\nu} \left(\vec{j}_{\vec{r}-\vec{\nu}}(t) - \vec{j}_{\vec{r}}(t) \right) \cdot \vec{\nu} ,$$

$$\vec{j}_{\vec{r}}(t) dt = \sum_{\vec{\nu}} \left[\eta_{\vec{r}}(1-\eta_{\vec{r}+\vec{\nu}}) \,\xi_{\vec{r},\vec{\nu}}(t) - \eta_{\vec{r}+\vec{\nu}}(1-\eta_{\vec{r}}) \,\xi_{\vec{r}+\vec{\nu},-\vec{\nu}}(t) \right] \vec{\nu} ,$$

equivalent to the M.E. if $\xi_{\vec{r},\vec{\mu}}(t)$

Usual MSR machinery gives

 $\left\langle e^{\lambda Q_T} \right\rangle = \left(\mathscr{D}\theta_{\vec{r}} \mathscr{D}\overrightarrow{\phi}_{\vec{r}} e^{-S[\eta_{\vec{r}},\vec{j}_{\vec{r}},\theta_{\vec{r}}]} \right)$

A. Lefèvre, G. Biroli, J. Stat. Mech. (2007) P07024

Davide Venturelli

$$) = \begin{cases} 1 & \text{with prob. } \gamma \, dt \, , \\ 0 & \text{with prob. } 1 - \gamma \, dt \, . \end{cases}$$

Microscopic path-integral representation

- Saddle-point eqs are difference equations for $\eta_{\vec{r}}, \vec{j}_{\vec{r}}, \theta_{\vec{r}}, \vec{\phi}_{\vec{r}}$ Turn out to relax to a stationary limit, $\mathcal{S} = \int_{0}^{T} dt \, \mathscr{L}[\{\eta, \vec{j}, \theta, \vec{\varphi}\}] \simeq T \, \mathscr{L}[\{\eta^*, \vec{j}^*, \theta^*, \vec{\varphi}^*\}]$
- Can be used to recover

$$\left\langle e^{\lambda Q_T} \right\rangle \simeq \exp\{-T[\mathscr{L}^* - \lambda(\vec{j}_{\vec{r}=\vec{0}}^*)_1]\} \longrightarrow \left\langle Q_t^2 \right\rangle = 2\gamma \left(1 - \frac{1}{d}\right) \bar{\rho}(1 - \bar{\rho})$$

Role of loops

looped structure of the lattice allows for vortex configurations, and thus for stationary $C_{\vec{r}}$

Davide Venturelli

Summing up

 $\mathbb{M}\left\langle Q_t^2 \right\rangle$ through a bond in SEP on infinite lattices, beyond 1d

 $\mathbb{I}\left\langle Q_t \eta_r(t) \right\rangle$ gives info on response of the bath

M Role of the **loops** in restoring normal diffusion

Use MFT on comb to compute (

 \Box Same in higher d via microscopic path-integral formalism

 \Box Statistics of displacement X_t of a tracer

Davide Venturelli

$$\left(\exp(\lambda Q_t)\right)$$
, beyond SEP

Théotim Berlioz

Aurélien Grabsch

Olivier Bénichou

Backup slides

Loops & vortices

... vortices as singularities in MFT

Davide Venturelli

T. Bodineau, B. Derrida, J. L. Lebowitz, J. Stat. Phys. (2008) 131: 821–841

Macroscopic Fluctuation Theory on the comb

$$\partial_t \left\langle \eta_{\vec{r}}(t) \right\rangle = \delta_{y,0} \Delta_x \left\langle \eta_{\vec{r}}(t) \right\rangle + \Delta_y \left\langle \eta_{\vec{r}}(t) \right\rangle$$
$$\left\langle \eta_{\vec{r}}(t) \right\rangle \simeq \rho \left(\frac{x}{T^{1/4}}, \frac{y}{T^{1/2}}, \frac{t}{T} \right)$$

Add noise:

$$\left\langle \nu_i(x, y, t)\nu_j(x', y', t') \right\rangle = \Sigma_{i,j}(\rho(x, y, t))\,\delta(x - x')\delta(y - y')\delta(t - t') \qquad \Sigma(\rho) = 2\rho(1 - \rho) \left(\frac{\delta(y)}{0} \right)^{-1}$$

Davide Venturelli

$$\partial_t \rho + \overrightarrow{\nabla} \cdot \overrightarrow{j} = 0$$
$$\vec{j} = -\overrightarrow{\mathbf{D}} \overrightarrow{\nabla} \rho + \overrightarrow{\nu}$$
$$\mathbf{D} = \begin{pmatrix} \delta(y) & 0\\ 0 & 1 \end{pmatrix}$$

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, arXiv:2407.14317

Macroscopic Fluctuation Theory

- Response field formalism
- Integrated current fluctuations

$$Q_T \simeq T^{3/4} \int_0^\infty dx \int_{-\infty}^\infty dy \left[\rho(x, y, 1) - \rho(x, y, 0)\right] \qquad \left\langle e^{\lambda Q_T} \right\rangle = \int \mathcal{D}\rho \,\mathcal{D}H \, e^{-T^{3/4} S[\rho, H] + \lambda Q_T}$$

Saddle point for large T gives moments of Q_T and

$$\frac{\left\langle \eta_{\vec{r}=(x,y)}(T) e^{\lambda Q_T} \right\rangle}{\left\langle e^{\lambda Q_T} \right\rangle} \simeq \rho^*(x,y,1)$$

$$P[\rho] = \int \mathscr{D}H e^{-T^{3/4} S[\rho, H]}$$

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, arXiv:2407.14317

