Tracer-bath correlations in *d***-dimensional interacting** particle systems

Davide Venturelli LPTMC, Sorbonne Université

DAMTP Statistical Physics and Soft Matter Seminar University of Cambridge, 21 January 2025 Work in collaboration with P. Illien, T. Berlioz, A. Grabsch, O. Bénichou

Tracer particle in a thermal bath

$$m \ddot{X}(t) = -\gamma \dot{X}(t) + \langle \zeta(t)\zeta(t')\rangle = 2\gamma k_B T \delta(t)$$

Brownian motion: bath in equilibrium, structureless, no tracer-bath correlations, diffusive behaviour

$$\langle X^n(t) \zeta(t) \rangle = 0, \qquad \langle X^2(t) \rangle \propto t$$

What if particles have similar sizes?

$-\zeta(t)$ - t')

Classical interacting particle systems and why we still talk about them

- Lattice gases, interacting Brownian particles, simple liquids...
- Dynamics, transport properties
- \mathbb{I} Local observables: integrated current Q_t , position X_t of tagged particle
- Random due to thermal fluctuations \longrightarrow determine statistical properties
- Interacting many-body problem, out of equilibrium

Symmetric Exclusion Process as paradigmatic diffusive system

- Particles on a lattice + random hoppings (equal rates), only if target site is empty
- State of the system: occupations $\rho_r(t) = \{0,1\}$
- In 1d, single-file geometry \rightarrow initial order preserved
- Subdiffusive behavior of tracer

$$\langle X_t^2 \rangle \propto \sqrt{t}$$

(zeolites, confined colloids, dipolar spheres...)

Lin, Meron, Cui, Rice, Diamant, Phys. Rev. Lett. 94 (21), 216001 (2005) Wei, Bechinger, Leiderer, Science 287 (5453), 625-7 (2000) Hahn, Kärger, Kukla, Phys. Rev. Lett. 76 (15), 2762-2765 (1996) H. Spohn, Large scale dynamics of interacting particles (1991)

Role of correlations with surrounding bath

Solution $\partial_t P(X, \rho, t) = \left[\mathscr{L} \right]$

Solution Multiply by $e^{\lambda \cdot X}$ and average,

$$\partial_{t} \Psi(\lambda, t) = \frac{1}{2d\tau} \sum_{\mu=-d}^{d} \left(e^{\sigma \lambda \cdot \hat{\mathbf{e}}_{\mu}} - 1 \right) \left[1 - w_{\mathbf{e}_{\mu}}(\lambda, t) \right]$$

$$\Psi(\lambda, t) = \ln \left\langle e^{\lambda \cdot X} \right\rangle = \sum_{n=1}^{\infty} \frac{\lambda^{n}}{n!} \left\langle X^{n} \right\rangle_{c}, \qquad w_{r}(\lambda, t) = \frac{\left\langle \rho_{X+r} e^{\lambda \cdot X} \right\rangle}{\left\langle e^{\lambda \cdot X} \right\rangle} = \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \left\langle \rho_{X+r} X \right\rangle_{c}$$

Davide Venturelli

$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

Role of correlations with surrounding bath

$$\partial_t \Psi(\lambda, t) = \frac{1}{2d\tau} \sum_{\mu=-d}^d \left(e^{\sigma \lambda \cdot \hat{\mathbf{e}}_{\mu}} - 1 \right)$$

- \mathcal{F} Knowing $W_{\mathbf{e}_{\mu}}(\lambda, t)$ on neighbouring sites is enough to deduce $\Psi(\lambda, t)$
- $i \partial_t w_{\mathbf{e}_{\mu}}(\boldsymbol{\lambda}, t) = \dots \left[w_{\mathbf{r}}(\boldsymbol{\lambda}, t) \right] \dots$ generically depends on $w_{\mathbf{r}}(\lambda, t)$ even from far away \mathbf{r}

 $W_{\mathbf{r}}(\lambda, t)$ encodes the **response** of the bath

 $\left|1-w_{\mathbf{e}_{\mu}}(\boldsymbol{\lambda},t)\right|$

Integrated current Q_t

- $\stackrel{\scriptstyle \swarrow}{=} Q_t = \text{net } \# \text{ of particles crossing } (0-1)$
- \rightarrow correlations dictate the subdiffusive behavior of Q_t
- $\langle \rho_r(t) e^{\lambda Q_t} \rangle$ encodes the **response** of the bath
- Fully understood in 1*d* SEP
- \sim Open problem in d > 1

Grabsch, Poncet, Rizkallah, Illien, Bénichou, Sci. Adv. 8, eabm5043 (2022)

1)
$$\rightarrow \text{ in } d = 1, \langle Q_t^2 \rangle \propto$$

\leq A positive fluctuation of Q_t is correlated with an increase of $\rho_r(t)$ on its r.h.s.

Davide Venturelli

1. Current fluctuations

As first step, focus on $c_r(t) \equiv \left\langle Q_t \rho_r(t) \right\rangle$

 $\mathbf{Fact 1}$: infinite lattice d = 1 (no reservoirs, no PBC) $c_r(t) \xrightarrow[t \to \infty]{} \bar{\rho}(1 - \bar{\rho}) \mathscr{C}_1\left(\frac{r}{\tau^{1/2}}\right),$ $\langle Q_t^2 \rangle \propto \bar{\rho}(1-\bar{\rho}) t^{1/2}$

 $\mathbf{Fact 2}$: finite systems (any spatial dimension d)

$$C_{\vec{r}}(t) \xrightarrow[t \to \infty]{} C_{\vec{r}}, \qquad \langle Q_t^2 \rangle \propto t$$

Recall
$$\partial_t \langle Q_t^2 \rangle = \dots [c_{\vec{r}}(t)] \dots$$

passing through the comb

Davide Venturelli

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, J. Stat. Mech. (2024) 113208

Results

 $ightarrow d = 1 \qquad c_r(t) \xrightarrow[t \to \infty]{} \bar{\rho}(1 - \bar{\rho}) \mathscr{C}_1\left(\frac{r}{\tau^{1/2}}\right)$ $\langle Q_t^2 \rangle = n_1 \bar{\rho} (1 - \bar{\rho}) t^{1/2}$ Comb

d = 2

Davide Venturelli

Macroscopic Fluctuation Theory

Hydrodynamic description for the occupations,

$$\partial_t \left\langle \rho_{\vec{r}}(t) \right\rangle = \delta_{y,0} \Delta_x \left\langle \rho_{\vec{r}}(t) \right\rangle + \Delta_y \left\langle \rho_{\vec{r}}(t) \right\rangle$$
$$\left\langle \rho_{\vec{r}}(t) \right\rangle \simeq \rho \left(\frac{x}{T^{1/4}}, \frac{y}{T^{1/2}}, \frac{t}{T} \right)$$

Add noise:

$$\left\langle \nu_i(x, y, t)\nu_j(x', y', t') \right\rangle = \Sigma_{i,j}(\rho(x, y, t))\,\delta(x - x')\delta(y - y')\delta(t - t') \qquad \Sigma(\rho) = 2\rho(1 - \rho) \left(\begin{array}{c} \delta(y) & 0\\ 0 & 1 \end{array} \right)$$

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, J. Stat. Mech. (2024) 113208

Macroscopic Fluctuation Theory on the comb

Integrated current fluctuations

 $Q_T \simeq T^{3/4} \int_0^\infty dx \int_{-\infty}^\infty dy \left[\rho(x, y, 1) - \rho(x, y, y)\right]_{-\infty}^\infty$

Saddle point

correlation profile optimal density $\left\langle \rho_{\vec{r}=(x,y)}(T) e^{\lambda Q_T} \right\rangle$ $\simeq \rho^*(x, y, 1)$ $e^{\lambda Q_T}$

$$\rho = \rho^{(0)} + \lambda \rho^{(1)} + \dots$$
$$H = H^{(0)} + \lambda H^{(1)} + \dots$$

$\partial_t \rho(\vec{r}, t) = \vec{\nabla} \cdot [\mathbf{D} \,\vec{\nabla} \rho + \vec{\nu}] \qquad \longrightarrow \qquad P[\rho] = \mathcal{D} H e^{-T^{3/4} S[\rho, H]}$

$$(v,0)] \qquad \left\langle e^{\lambda Q_T} \right\rangle = \int \mathcal{D}\rho \, \mathcal{D}H \, e^{-T^{3/4} S[\rho,H] + \lambda}$$

Macroscopic Fluctuation Theory towards higher moments and general diffusive processes

- Solve Recover $\langle \rho_r(T) Q_T \rangle$, $\langle Q_T^2 \rangle$ + in principle higher moments/correlations
- Can be extended to other models

First application of MFT to an inhomogeneous system (comb)

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, J. Stat. Mech. (2024) 113208

What about higher d?

- \mathbb{I} In 1d & comb, correlations vary slowly at the lattice scale
- In higher d correlations become stationary, no scaling limit!

Microscopic path-integral representation

$$\rho_{\vec{r}}(t+dt) - \rho_{\vec{r}}(t) = dt \sum_{\nu} \left(\vec{j}_{\vec{r}-\vec{\nu}}(t) - \vec{j}_{\vec{r}}(t) \right) \cdot \vec{\nu} ,$$

$$\vec{j}_{\vec{r}}(t) dt = \sum_{\vec{\nu}} \left[\rho_{\vec{r}}(1-\rho_{\vec{r}+\vec{\nu}}) \,\xi_{\vec{r},\vec{\nu}}(t) - \rho_{\vec{r}+\vec{\nu}}(1-\rho_{\vec{r}}) \,\xi_{\vec{r}+\vec{\nu},-\vec{\nu}}(t) \right] \vec{\nu} ,$$

Usual MSR machinery gives

A. Lefèvre, G. Biroli, J. Stat. Mech. (2007) P07024

Davide Venturelli

equivalent to the M.E. if Poissonian noise is $\xi_{\vec{r},\vec{\mu}}(t) = \begin{cases} 1 & \text{prob. } \gamma dt, \\ 0 & \text{prob. } 1 - \gamma dt \end{cases}$

Microscopic path-integral representation

- Saddle-point eqs are difference equations for $\rho_{\vec{r}}, \vec{j}_{\vec{r}}, \theta_{\vec{r}}, \vec{\phi}_{\vec{r}}$ Turn out to relax to a stationary limit, $\mathcal{S} = \int_{0}^{T} dt \, \mathscr{L}[\{\rho, \vec{j}, \theta, \vec{\varphi}\}] \simeq T \, \mathscr{L}[\{\rho^*, \vec{j}^*, \theta^*, \vec{\varphi}^*\}]$
- Can be used to recover

$$\left\langle e^{\lambda Q_T} \right\rangle \simeq \exp\{-T[\mathscr{L}^* - \lambda(\vec{j}_{\vec{r}=\vec{0}}^*)_1]\} \longrightarrow \left\langle Q_t^2 \right\rangle = 2\gamma \left(1 - \frac{1}{d}\right) \bar{\rho}(1 - \bar{\rho})$$

Role of loops

looped structure of the lattice allows for vortex configurations, and thus for stationary $C_{\vec{r}}$

Davide Venturelli

2. Tracer-bath correlations

Davide Venturelli

Hard-core lattice gas in d dimensions

Fixed tracer at X_t , bath occupations $\rho_r(t) = \{0,1\}$ Solution \mathbb{I} Using the ME, get an equation for $g_r(t) = \langle X_t \rho_{X+r}(t) \rangle \rightarrow \text{not closed!}$ $\partial_t g_r(t) = (...)$ can be closed upon *decoupling* $\langle \rho_{X+r} \rho_{X+r'} \rangle \simeq \langle \rho_{X+r} \rangle \langle \rho_{X+r} \rangle$ $\langle X_t \rho_{X+r} \rho_{X+r'} \rangle \simeq \langle X_t \rho_{X+r} \rangle \langle \rho_{X+r'} \rangle + \langle X_t \rho_{X+r'} \rangle \langle \rho_{X+r'} \rangle$

(exact for large/small $\bar{\rho}$)

Bénichou, Illien, Oshanin, Sarracino, Voituriez, Phys. Rev. Lett. 115, 220601 (2015)

Davide Venturelli

$$|r'\rangle$$

Hard-core lattice gas in d dimensions

Self-consistent difference eq. for $g_r(t) = \langle X_t \rho_r(t) \rangle$ Assume $g_r(t) \rightarrow g_r$ at long t For large $x = \mathbf{r} \cdot \hat{\mathbf{e}}_1$, $g_x \sim x^{1-d}$

D. Venturelli, P. Illien, A. Grabsch, O. Bénichou, arXiv:2411.09326 (2024)

Soft interacting particles in d dimensions

Solution i = 0, ..., N Solution i = 0, ..., N

$$\dot{\mathbf{X}}_{i}(t) = -\mu \sum_{j \neq i} \nabla_{i} U \left(\mathbf{X}_{i}(t) - \mathbf{X}_{j}(t) \right) + \boldsymbol{\eta}_{i}(t),$$

- "soft" potentials $U(\mathbf{x})$, e.g. Gaussian core
- **Tracer** i = 0 (omitted)
- **Correlation profiles**?

$\langle \boldsymbol{\eta}_i(t)^T \boldsymbol{\eta}_i(t') \rangle = 2\mu T \delta_{ij} \delta(t-t') I_d$

Coarse-grained dynamics with a tracer

Dean-Kawasaki equation for $\rho(x, t) =$

$$\partial_{t} \mathbf{X}(t) = -\mu \nabla_{\mathbf{X}} \mathscr{F}[\rho, \mathbf{X}] + \boldsymbol{\eta}_{0}(t),$$
FIG. 1. David Dean and Kyozi Kawa
who are very happy that their equations
being used for the zillionth time.

$$\partial_{t} \rho(\mathbf{x}, t) = \mu \nabla \cdot \left[\rho(\mathbf{x}, t) \nabla \frac{\delta \mathscr{F}}{\delta \rho(\mathbf{x}, t)} \right] + \nabla \cdot \left[\rho^{\frac{1}{2}}(\mathbf{x}, t) \boldsymbol{\xi}(\mathbf{x}, t) \right],$$

$$\mathscr{F}[\rho, \mathbf{X}] = T \int d\mathbf{x} \rho(\mathbf{x}) \log\left(\frac{\rho(\mathbf{x})}{\rho_{0}}\right) + \frac{1}{2} \int d\mathbf{x} \, d\mathbf{y} \, \rho(\mathbf{x}) U(\mathbf{x} - \mathbf{y}) \rho(\mathbf{y}) + \int d\mathbf{y} \, \rho(\mathbf{y}) U(\mathbf{y} - \mathbf{X})$$

Solution $\rho(\mathbf{x}, t) = \rho_0 + \sqrt{\rho_0 q}$

$$\sum_{i=1}^N \delta\left(x - X_i(t)\right),\,$$

$$\phi(\mathbf{x}, t)$$
, assuming $\phi/\sqrt{\rho_0} \ll 1$.

V. Démery et al., New J. Phys. 16 (2014) 053032

Tracer statistics from correlation profiles

 $P(\mathbf{x},t) = \rho_0 + \sqrt{\rho_0} \phi(\mathbf{x},t) \to \text{coupled eqs for } \mathbf{X}(t), \phi(\mathbf{x},t) \text{ (linear in } \phi)$

How does $\Psi(\lambda, t) = \ln \langle e^{\lambda \cdot \mathbf{X}(t)} \rangle$ evolve?

$$\partial_t \Psi(\boldsymbol{\lambda}, t) = \lambda^2 \mu T + \sqrt{\rho_0} \mu \, \boldsymbol{\lambda} \cdot \int \mathrm{d}^d x \, U(\mathbf{x}) \, \nabla_{\mathbf{x}} \, w(\mathbf{x}, \boldsymbol{\lambda}, t),$$

with the profile

$$w(\mathbf{x}, \lambda, t) = \frac{\left\langle \phi(\mathbf{x} + \mathbf{X}(t), t) e^{\lambda \cdot \mathbf{X}(t)} \right\rangle}{\left\langle e^{\lambda \cdot \mathbf{X}(t)} \right\rangle} =$$

$$\partial_t \Psi(\lambda, t) = \frac{1}{2d\tau} \sum_{\mu=-d}^d \left(e^{\sigma \lambda \cdot \hat{\mathbf{e}}_{\mu}} - 1 \right) \left[1 - w_{\mathbf{e}_{\mu}}(\lambda) \right]$$

average density profile

 $\langle \phi(\mathbf{x} + \mathbf{X}(t), t) \rangle + \lambda \cdot \langle \mathbf{X}(t) \phi(\mathbf{x} + \mathbf{X}(t), t) \rangle + \mathcal{O}(\lambda^2)$

correlation profile $g(x, t) \leftarrow$

Beware of zero modes

In the theory of fluids, stationary quantities are computed as

$$\langle \mathbf{X} \rho(\mathbf{x} + \mathbf{X}) \rangle \propto \int \mathscr{D} \rho \int d\mathbf{X} \, \mathrm{e}^{-\frac{1}{T} \mathscr{F}[\rho, \mathbf{X}]}$$

upon defining $\rho'(\mathbf{x}) = \rho(\mathbf{x} + \mathbf{X})$.

- Solution But thermodynamic quantities only depend on $|X_i X_i|$, whereas $[X \rho(x + X)]$ depends also on COM
- Trivial zero! \rightarrow Need to use EOM to predict stationary profiles. Ģ

^X] $[\mathbf{X}\rho(\mathbf{x}+\mathbf{X})] = \mathbf{0}$

Stationary correlation profile large-distance behavior

- From coupled EOM for $\partial_t \mathbf{X}(t)$ and $\partial_t \phi(\mathbf{x}, t)$, write one for $g(\mathbf{x},t) = \hat{\mathbf{e}}_1 \cdot \langle \mathbf{X}(t)\phi(\mathbf{x} + \mathbf{X}(t),t) \rangle$
- \mathcal{F} Compute $g(\mathbf{x})$ perturbatively
- At large distance $x = \mathbf{x} \cdot \hat{\mathbf{e}}_1$,

 $g(x) \sim x^{1-d}$

D. Venturelli, P. Illien, A. Grabsch, O. Bénichou, arXiv:2411.09326 (2024)

Lennard-Jones fluids stationary correlation profile

- Strong repulsion beyond linearised D-K theory
- Simulate LJ and WCA suspensions

Are short-distance details of *interactions irrelevant for large-distance* behaviour of the bath response?

Average density profile under steady driving

- Stationary density profile in the frame of the tracer, $\varphi(\mathbf{x},t) = \langle \phi(\mathbf{x} + \mathbf{X}(t),t) \rangle$ \bigvee For $x_{||} \rightarrow -\infty$, $\varphi(x_{||}, \mathbf{x}_{\perp} = \mathbf{0}) \sim - |x_{||}|^{-\frac{1+d}{2}} \quad \bigcirc \\ \mathbf{x}_{\parallel} \quad \mathbf{x}_{\perp} = \mathbf{0} \quad \mathbf{x}_{\parallel} \quad \mathbf{x}_{\parallel}$ 10^{-2} 10^{-6}
- V. Démery et al., New J. Phys. **16** (2014) 053032
- O. Bénichou et al., Phys. Rev. Lett. 84, 511 (2000)

Davide Venturelli

Universality in diffusive systems

Fluctuating hydrodynamics, macroscopic fluctuation theory

Davide Venturelli

Summing up **Spatial correlation profiles are worth checking out!**

 $\mathbb{M}\left\langle Q_t \rho_r(t) \right\rangle$ gives info on **response** of the bath (e.g. role of **loops**), $\mathbb{M}\left(X_t \rho_r(t)\right) \sim r^{1-d}$ for large r in a hard-core lattice gas, *M* and for Brownian suspensions with both weak/strong repulsion. Why?

- \mathbf{M} and gives access to moments, e.g. $\langle Q_t^2 \rangle$ on infinite lattices in d > 1.

T. Berlioz, D. Venturelli, A. Grabsch, O. Bénichou, J. Stat. Mech. (2024) 113208

D. Venturelli, P. Illien, A. Grabsch, O. Bénichou, arXiv:2411.09326 (2024)

Pierre Illien

Théotim Berlioz

Davide Venturelli

Aurélien Grabsch

Olivier Bénichou

